NUMERICAL APPROXIMATION OF SINGULAR MULTI-ORDER FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY LEAST SQUARES AND AKBARI-GANJI'S METHODS
Keywords:
Singular Multi-order Fractional, Volterra Integro-differential Equations, Least Squares Method, Akbari-Ganji's Method
Abstract
This article is concerned with the numerical solution of singular multi-order fractional Volterra integro-dierential equations. Two numerical methods are proposed; Least Squares and Akbari-Ganji's Methods using Legendre polynomials as basis functions. The proposed methods were demonstrated on some examples to verify their practicability and the results obtained were very close to the exact solution.
References
[1] O. Abu-arqub, M. Al-Smadi, H. Almusawa, D. Baleanu, T. Haya, M. Alhodaly, M. S. Osman A novel analytical algorithm for generalized fifth-order time-fractional non-linear evolution equations with conformable time derivatives arising in shallow water waves. Alexendria Engineering Journal 61(2021) 5753-5769.
https://doi.org/10.1016/j.aej.2021.12.044
[2] J.H.S. Alkhalissi, I. Emirogle, M. Bayyram, A. Secer, A. Tasci A new operational matrix of fractional derivatives based on the generalized Gegenbauer-Humbert polynomials to solve fractional differential equations Alex. Eng.J. 60 (2021) 3509-3519.
[3] D. Baleanu, M. H. Abadi, A. Jajarmi, K. Z. Vahid, J.J. Nieto A new comparative study on the general fractional model of covid-19 with isolation and quarantine effects. Alexendria Engineering Journal 61(2002) 4779-4791 . https://www.sciencedirect.com/science/article/pii/S111001682100702
[4] S. Djennadi, N. Shawagfeh, M. S. Osman, J. F. Gmez-Aguilar, O. Abu-Arqub The Tikhonov regularization method for the inverse source problem of time fractional least equation in the view of ABC-fractional technique. Phys. Scripts. 96 (2021) 217-232.
[5] C. Y. Gu, G. C. Wu, B. Shiri An inverse problem approach to determine possible memory length of fractional differential equations. Fract. cal. Appl. Anal. 24 (2021) 1919-1936.
[6] Z.P. Hao, W. R. Cao An improved algorithm based on finite difference schemes for fractional boundary value problems with non-smooth solution. J. Sci. Comput 73(2017) 395-415
[7] S. Kumar, R. Kumar, M. S. Osman, B. Samet A wavelet based numerical scheme of measles by using Genocchi polynomials. Numer. Math. Part. D.E. 37(2021) 1250-1268.
[8] T. Oyedepo, C. Y. Ishola, O. A. Uwaheren, M. I. Olaosebikan, M. O. Ajisope, A. A. Victor Least square bernstein method for solving fractional integro-differential equations.
[9] M. K. Sadabad, A. J. Akbarfam, B. Shiri A numerical Study of Eigen values and eigen functions of fractional sturm-Liouville problems via Laplace transform (2020)
[10] O. A. Uwaheren, A. F. Adebisi, C.Y. Ishola., M.T. Raji., A.O. Yekeem, O.J. Peter. Numerical solution of volterra integro-differential equations by Akbari Ganji's method. Journal of Mathematic and its application 16 (2022) 1123-1130. https://doi.org/10.30598/barekengvol16iss3pp1123-1130
[11] M. Weibeer Ecient Numerical Methods for Fractional Differential Equations and their Analytical Background. Ph.D Thesis. Von der Carl-Friedrich-Gaub-Fakultat fur Mathematik und Informatik der Techniscihen Universitat Braunschweig (2005)
[12] Y. Wei, J. Zhou A two-step algorithm for solving singular linear system with index one,. Appl. Math and comp. 174 (2021) 252-270.
[13] G. Yang, B. Shiri, H. Kong, G. C. Wu Intermediate value problems for fractional differential equations. Comp. Appl. Math. 195 (2021) 314-341.
https://doi.org/10.1016/j.aej.2021.12.044
[2] J.H.S. Alkhalissi, I. Emirogle, M. Bayyram, A. Secer, A. Tasci A new operational matrix of fractional derivatives based on the generalized Gegenbauer-Humbert polynomials to solve fractional differential equations Alex. Eng.J. 60 (2021) 3509-3519.
[3] D. Baleanu, M. H. Abadi, A. Jajarmi, K. Z. Vahid, J.J. Nieto A new comparative study on the general fractional model of covid-19 with isolation and quarantine effects. Alexendria Engineering Journal 61(2002) 4779-4791 . https://www.sciencedirect.com/science/article/pii/S111001682100702
[4] S. Djennadi, N. Shawagfeh, M. S. Osman, J. F. Gmez-Aguilar, O. Abu-Arqub The Tikhonov regularization method for the inverse source problem of time fractional least equation in the view of ABC-fractional technique. Phys. Scripts. 96 (2021) 217-232.
[5] C. Y. Gu, G. C. Wu, B. Shiri An inverse problem approach to determine possible memory length of fractional differential equations. Fract. cal. Appl. Anal. 24 (2021) 1919-1936.
[6] Z.P. Hao, W. R. Cao An improved algorithm based on finite difference schemes for fractional boundary value problems with non-smooth solution. J. Sci. Comput 73(2017) 395-415
[7] S. Kumar, R. Kumar, M. S. Osman, B. Samet A wavelet based numerical scheme of measles by using Genocchi polynomials. Numer. Math. Part. D.E. 37(2021) 1250-1268.
[8] T. Oyedepo, C. Y. Ishola, O. A. Uwaheren, M. I. Olaosebikan, M. O. Ajisope, A. A. Victor Least square bernstein method for solving fractional integro-differential equations.
[9] M. K. Sadabad, A. J. Akbarfam, B. Shiri A numerical Study of Eigen values and eigen functions of fractional sturm-Liouville problems via Laplace transform (2020)
[10] O. A. Uwaheren, A. F. Adebisi, C.Y. Ishola., M.T. Raji., A.O. Yekeem, O.J. Peter. Numerical solution of volterra integro-differential equations by Akbari Ganji's method. Journal of Mathematic and its application 16 (2022) 1123-1130. https://doi.org/10.30598/barekengvol16iss3pp1123-1130
[11] M. Weibeer Ecient Numerical Methods for Fractional Differential Equations and their Analytical Background. Ph.D Thesis. Von der Carl-Friedrich-Gaub-Fakultat fur Mathematik und Informatik der Techniscihen Universitat Braunschweig (2005)
[12] Y. Wei, J. Zhou A two-step algorithm for solving singular linear system with index one,. Appl. Math and comp. 174 (2021) 252-270.
[13] G. Yang, B. Shiri, H. Kong, G. C. Wu Intermediate value problems for fractional differential equations. Comp. Appl. Math. 195 (2021) 314-341.
Published
2024-11-30
How to Cite
Uwaheren, O. A., Odetunde, O., Anyanwu, E. O., Aderibigbe, F. Y., & Pius, C. L. (2024). NUMERICAL APPROXIMATION OF SINGULAR MULTI-ORDER FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY LEAST SQUARES AND AKBARI-GANJI’S METHODS. Unilag Journal of Mathematics and Applications, 4(1), 21-34. Retrieved from http://lagjma.unilag.edu.ng/article/view/2280
Section
Articles
Copyright (c) 2024 O. A. Uwaheren, Opeyemi Odetunde, E. O. Anyanwu, F. Y. Aderibigbe, C. L. Pius
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.