SOME FIXED POINT RESULTS FOR REICH TYPE CONTRACTION MAPPINGS IN BIPOLAR METRIC SPACES WITH APPLICATIONS

  • KANAYO STELLA EKE DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LAGOS, AKOKA, LAGOS STATE, NIGERIA.
  • HUDSON AKEWE DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LAGOS, AKOKA, LAGOS STATE, NIGERIA.
Keywords: bipolar metric spaces, contravariant mappings, fixed point, fractional differential equation, Reich convex contraction type mapping

Abstract

In this study, we present the novel idea of contravariant mappings with Reich convex contraction type in bipolar metric spaces, contributing to the understanding of distances between disparate entities. Furthermore, we establish the existence of a singular fixed point for contravariant mappings of Reich convex contraction-type within complete bipolar metric spaces. Our investigation extends to obtaining solutions for integral and fractional differential equations through the application of this operator. To validate our findings, we presented examples to illustrate the implications of the results.

References

[1] S. Banach. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundamenta Mathematicae. (1922), 133-181.
[2] K. S. Eke, V. O. Olisama and S. A. Bishop. Some fixed point theorems for convex contractive mappings in complete metric spaces with applications. Cogent Mathematics and Statistics. (2019), 6:1655870.
[3] M. Frechet. Sur quelques points du calcul fontionnel. Rendendiconti del Ciricolo Mathe- matico di Palermo. 22(1906), 1-74.
[4] Y. U. Gaba, M. Aphane and H. Aydi. (α, BK)- contractions in bipolar metric spaces. Journal of Mathematics. Volume 2021, Article ID 5562651, 6 pages, https:// doi. org/ 10.115562651.
[5] U. Gurdal, A. Mutlu and K. Ozkan.Fixed point results for α − ψ- contractive mappings in bipolar metric spaces. Journal of Inequalities and Special Functions. 11(1) (2020), 64-75.
[6] O. F. Imaga, S. A. Iyase and O. G. Odekina. Resonant mixed fractional - order- p-Laplacian boundary value problem on the half-line. Nonauton. Dyn. Syst. 8(2021), 328 -339.
[7] V. I. Istratescu. Some fixed point theorems for convex contraction mappings and nonexpan- sive mapping. I, Liberatan Mathematical. 1(1981), 151-163.
[8] G. N. V. Kishore, R. Agarwal, B. S. Rao and R. V. N. S. Rao. Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications. Fixed Point Theory and Applications. (2018), 2018:21.
[9] A. Mutlu and U. Gurdal.Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 9(2016), 5362-5373.
[10] G. Nallaselli, A. J. Gnanaprakasam, G. Mani, O. Ege, D. Santina and N. Mlaiki . A study on fixed point techniques under the α -F- convex contraction with an Application. Axioms. (12)( 2023), 139. https:// doi.org/10. 3390/axioms 12020139
[11] J. Paul, M. Sajid, N. Chandra and U. C. Gairola.Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics. 8(8)(2023), 19004 -19017. Doi: 10.3934/math.203969.
Published
2025-12-29
How to Cite
EKE, K. S., & AKEWE, H. (2025). SOME FIXED POINT RESULTS FOR REICH TYPE CONTRACTION MAPPINGS IN BIPOLAR METRIC SPACES WITH APPLICATIONS. Unilag Journal of Mathematics and Applications, 5(2), 22 - 31. Retrieved from https://lagjma.unilag.edu.ng/article/view/2788