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MODIFIED RUNGE-KUTTA ALGORITHM FOR OSCILLATORY
CHEMICAL KINETICS

J.O. EHIGIE

ABSTRACT. Oscillatory dynamics frequently arise in the kinetics of chemical
reactions, posing significant challenges to traditional numerical methods in
capturing the dynamics. In this study, we introduce a class of modified Runge-
Kutta methods specifically designed to solve such oscillatory chemical kinetics
problems. Based on exponential fitting conditions for Runge-Kutta methods,
we adapt several classical Runge-Kutta methods to better accommodate oscil-
latory behaviour. Three distinct classes of these modified methods based on
some choosen parameters are proposed and presented. To evaluate their effec-
tiveness, we conduct numerical experiments on two practical problems char-
acterised by oscillatory chemical reactions. The results clearly demonstrate
that the modified Runge-Kutta methods outperform their classical counter-
parts when applied to oscillatory systems.

1. INTRODUCTION

In recent decades, the mathematical modelling of chemical reactions has seen
substantial progress, particularly through the use of ordinary differential equa-
tions (ODESs). These models enable the simulation, quantitative evaluation, and
a deeper theoretical understanding of the dynamics of complex chemical systems.
In some cases, bifurcation analysis has been employed to examine how system
behaviour changes with respect to variations in control parameters, thereby en-
hancing the sensitivity analysis of such models. These developments have been
facilitated by the advent of sophisticated mathematical software tools, which have
significantly simplified both symbolic and numerical computations.

Oscillatory behaviour is a well-documented phenomenon in chemical kinetics,
where the concentration of one or more chemical species fluctuates periodically
over time. Several prototypical systems that exhibit such behaviour include the
Bray-Liebhafsky reaction, the Belousov-Zhabotinsky reaction, Goodwin’s enzy-
matic oscillators, and the Lotka—Volterra predator-prey model. These systems
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have long been of interest to both chemists and applied mathematicians due to
their inherent nonlinearity and complex temporal dynamics.

Using stoichiometric laws and the law of mass action, chemical reaction mech-
anisms can be systematically converted into systems of coupled nonlinear ODEs
that faithfully describe the evolution of species concentrations over time. When
these models exhibit oscillatory or periodic solutions, they present additional
challenges for numerical simulation. In such cases, classical numerical methods,
such as the well-known Runge-Kutta family, often fail to maintain accuracy and
stability over extended integration intervals. This is especially evident when the
numerical solution is expected to preserve the amplitude and phase of the oscil-
lations inherent in the system.

While many practitioners in chemistry and related sciences rely on established
mathematical packages that implement standard integration techniques, these
methods were not originally designed with oscillatory dynamics in mind. Con-
sequently, they may yield results that are either inaccurate or computationally
inefficient. As a result, there is a growing demand for the development of new
numerical algorithms that are specifically tailored to capture the oscillatory char-
acteristics of these systems.

One fruitful approach involves adapting numerical schemes to mimic the ana-
lytical structure of known solutions. For example, the exact solution of the simple
harmonic oscillator is described in terms of sine and cosine functions. This insight
motivates the incorporation of trigonometric fitting techniques into Runge-Kutta
methods, leading to modified schemes capable of reproducing the qualitative and
quantitative features of oscillatory systems. In this study, we extend the classical
fourth-order Runge-Kutta-Gill method by constructing a trigonometrically-fitted
version whose coefficients depend explicitly on the time step and an estimate
of the system’s oscillation frequency. Unlike conventional Runge-Kutta meth-
ods with constant coefficients, the proposed method is adaptive and dynamically
aligns with the oscillatory nature of the underlying system.

The modelling of oscillatory chemical reactions dates back to the pioneering
work of Bray and Liebhafsky [7]. Since then, oscillatory chemical reactions have
gained significant attention, notably from Belousov [5] and Zhabotinsky [35].
Other notable examples include the Goodwin [19] enzymatic reactions, the Briggs-
Rauscher reaction Briggs and Rauscher [§], and many more. Cardelli [TT] explored
the transformation of chemical reaction systems into ODEs, while Petrusevski et
al. [28] demonstrated oscillating reactions experimentally, providing two analo-
gies.

In the numerical analysis community, there has been significant effort to adapt
classical methods for oscillatory problems. Van den Berghe et al. [33] proposed
a class of exponentially-fitted Runge-Kutta methods, while Calvo et al. [10] and
Simos [30] explored similar adaptations. Van de Vyver [32] developed explicit
Runge-Kutta schemes for Schrodinger-type equations, and more recently, Zhang
et al. [37] introduced phase-fitted splitting methods for simulating chemical os-
cillators. Furthermore, Ehigie et al. [15] presented exponentially-fitted diagonal
implicit Runge-Kutta schemes for Hamiltonian systems, and Naseri et al. [26]
implemented oscillatory simulations using spreadsheet based macros. Several
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researchers have made significant contributions to the development of exponen-
tially fitted numerical methods, particularly for solving oscillatory differential
equations. Lee et al. [24] introduced high-order exponentially and trigonometri-
cally fitted explicit two-derivative Runge-Kutta-type methods tailored for third-
order oscillatory problems. Similarly, Chen et al. [12] developed exponentially
fitted two-derivative Runge-Kutta methods specifically for simulating oscillatory
genetic regulatory systems. Ehigie et al. [16] proposed a class of exponentially fit-
ted two-derivative diagonally implicit Runge—Kutta (DIRK) methods for general
oscillatory problems, offering improved accuracy. Al-Fayyadh et al. [3] extended
this approach by constructing an exponentially fitted DIRK method for the direct
solution of fifth-order ordinary differential equations. Conte and Frasca-Caccia
[13] presented exponentially fitted methods that also preserve conservation laws,
ensuring better long-term stability. Zhai et al. [36] introduced implicit symmetric
symplectic and exponentially fitted Runge-Kutta—Nystrom methods for oscilla-
tory systems, combining structural preservation with improved fitting. Senu et
al. [29] proposed an improved Runge-Kutta method incorporating trigonomet-
rically fitted techniques to address oscillatory dynamics. Ghawadri et al. [I§]
developed a fourth-order explicit modified Runge—Kutta-type method with expo-
nential fitting for third-order ODEs. Amiri [4] applied drift exponentially fitted
stochastic Runge-Kutta methods to [to stochastic differential systems, extending
the approach to the stochastic domain. Finally, Tiwari and Pandey [31] revised
and enhanced a pseudo-Runge-Kutta method with exponential fitting, demon-
strating its effectiveness in oscillatory simulations.

Despite these advancements, accurately estimating the frequency of oscilla-
tions, which is essential for frequency-dependent methods, remains a major chal-
lenge. To address this, we adopt frequency estimation strategies as proposed by
Van de Vyver [32] and Vigo-Aguiar and Ramos [34]. Although several adaptations
of classical Runge-Kutta methods for oscillatory problems have been developed,
In this paper, we present the modified Runge-Kutta-Gill method by adapting
the exponential fitting conditions of modified Runge-Kutta methods to specially
handle oscillatory systems.

2. OSCILLATORY CHEMICAL REACTIONS

A system of chemical reactions is a finite set of reactions between a finite set
of chemical species. It is commonly assumed that chemical reactions are well-
stirred solutions such that the dynamics of chemical reactions depends only on
concentrations of the species (and on other factors, such as temperature, that
are assumed fixed). A system of ordinary differential equations can be extracted
from any chemical system of reaction by product of the stoichiometric matrix and
the vectors of rate laws, see (Horn and Jackson [22], Cardelli [TI1]). An N-species
chemical reaction system involving M reactions can be described by the following
reaction formula:

Rj : ijSl +.. .mNJ-SN — m'ljjSl +... —I—m'NJSN, ] = ]_, .. .7M (21)

The dynamics of a chemical reaction systems can be modelled by a system of
ordinary differential equations (called the reaction rate equations (RREs)) given
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d[S;] ZM .
_t__j 1Uij- Z——]_,...,N, (22)

where [S;(t)] is the concentration of the species S; at time ¢, v;; represents the
contribution of reaction R; to the reaction rate of species S;. By the law of mass
action, the reaction rate v;; takes the form

Vij = Tijkj[si]ml’j c. [SN]mN’j, 1= 1, c. ,N, (23)
and k; are the reaction rate constant which are reaction-dependent,
1 if m’zy > M5
riy = sgn(my; —mg;) = €0 if  m'ij =my; (2.4)

—1 if m/’Lj < Myj
In this paper, we study the quantitative analysis of some class of Runge-Kutta
algorithms for some well known oscillatory chemical kinetics models. We shall

consider models such as the Oregenator, Lotka-Volterra and the Brusselator sys-
tem.

2.1. Lotka-Volterra Model. Consider the chemical reaction system consisting
three reactions between two reactants S; and Sy (Hering [21], Hairer [20], Bibik
[6], Zhang et al. (2017)):

Sl — 2S1, Sl + SQ — 252, Sg — (Z)

The reaction rates of the three reactions are r, k and d, respectively. Let u(t) and
v(t) denote the concentrations of S; and Sy at time ¢. By the mass-action law,
the evolution of the reactants is governed by the following Lotka-Volterra system

= (r—kv)u, v=(ku—d)wv. (2.5)

For the parameter values k = d = 1, r = 2, the logarithmic transformation
p = logu, ¢ = logv of the Lotka-Volterra system (2.5 results in a Hamiltonian
problem of the form

p=1—¢e? p=eP—2, (2.6)
with the Hamiltonian
H(p,q) =e"+e!—(2p+q). (2.7)

2.2. Brusselator System. The brusselator is an autocatalytic chemical reaction
model that characterizes an oscillatory chemical reactiion derived by Nicholis and
Prigogine [27] with chemical reaction of the form

A= X
2X +Y = 3X
B+X—-Y+D
X =K
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These reactions describe the interaction and transformation chemical species,
leading to oscillatory dynamics under certain conditions. Using the RREs, the
transformation of the reaction network into a mathematical framework for anal-
ysis, results in the following system of nonlinear differential equation:

=A+yi(t)y, — (B+ 1Ly 11(0) =

Y2 = By — yiys y2(0) = 3,

where y;(t) and ys(t) represent the concentrations of key chemical species at
time ¢, while A and B are positive real constants associated with the system’s
parameters. The variation between the constants A and B significantly influences
the system’s stability. The equations captures the complex feedback mechanism
that drives the autocatalytic nature of the reaction.

(2.8)

3. MoDIFIED RUNGE-KUTTA ALGORITHMS

Suppose the solution of the non-dimensionless form of the RREs is known to
oscillate for some given parameters r;;, k;; with initial condition [S;](to) = [S:](0),
we simulate the system by discretizing the interval [to, T] such that ¢, = to + nh,
n=20,...,N — 1, where h is the stepsize.

Consider an initial value problem of the systems of ODE

v =fty), ylto) =y0 (3.1)
which represents a general form of (2.2), where f : R x RY = R" is a smooth
function ensuring that the problem is well posed, that is, it satisfies the conditions
of existence and uniqueness of solution. With the assumption that the system is
autonomous, we define the following:

Definition 3.1 (Butcher [9]). The s-stage Runge-Kutta method for the numerical
solution of (3.1)) is given by

Y;:yn—i_hzaz]f(tn—i_cjhay;)? i .-
= (3.2)
yn+1—yn+h2bf(t +¢jh,Yj)

i=1

Suppose the IVP (3.1)) has oscillatory solution of a certain frequency w. The
idea of a modified Runge-Kutta method is to introduce coefficients depending on
z = iwh. Hence, we define the following:

Definition 3.2 (Ehigie et al. [I5]). An s-stage modified Runge-Kulta (RK)
method for solving the system ((3.1] @ has the scheme

YiZm(Z)ynJrhi%() fltn+ ()0 Y}), i=1,...s, -
=1 3.3
yn+1—yn+hz J(2)f(t + ¢3(2)h, Vi),

where h is the stepsize, 7;(2),bi(2), a;j(2),ci(2), 1 < j <4, i = 1,...,s are
assumed to be even functions of z = iwh.
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It is usually assumed that hII[l) ni(z) = 1 so that as z — 0, the scheme ({3.3))
Z—

reduces to a traditional Runge-Kutta method.
The scheme (3.3)) can be compactly expressed using the Butcher tableau

c1(2) |m(2) | an(z) ... as(2)
c(2) [ n(z) [ A(z) : : : :
Y a@ ) [ aa(s) o anle)
| | bi(z) ... b(2)

3.1. Exponentially fitting conditions. The basic idea of exponential fitting
is to introduce fitting coefficients to the scheme of a traditional Runge-Kutta
method so that the method can integrate without truncation error differential
equations with solution of a exponential function exp(Az), A € C. Exponentially
fitted (EF) algorithms have been systematically studies by Ixaru and Vanden
Berghe [23]. Vanden Berghe et al. [33] presented the exponential fitting condi-
tions for the Runge-Kutta methods and derived some practical explicit EFRK
methods. We follow the approach of Albrecht [II, 2] and view each internal stage
of the scheme as a linear multistep method on a non-equidistant grid. In
what follows:

e to the internal stages of (3.3)), we associate the linear operators

Li[A(z), Wy (t) = y(t + c;i(2)h) — hZaU y'(t+ch), i=1,...s

(3.4)
e to the update of (3.3]), we associate a linear operator

L[b(2), hly(t) = y(t + h) — th Y (t + ¢;h). (3.5)

Requiring that the operators £; and £ to vanish for the functions {exp(+Az)}
leads to the following equations:

> ay(z) sinh(c(2)2) = COSh(Ci(Z);) i/ C

gaij(z) cosh(c;(2)z) = M i=1,...,s
SRR CEL) e
i b(2) cosh(e(2)2) = T2

where z = )\h Equations (3.6)) are called the ezponential fitting conditions.
Theorem 3.3. A modified method is at least of order two.

3.2. Modified Explicit Runge-Kutta Methods. Using, we present the
coefficients for some 4-stage modified Runge-Kutta methods. We give the analysis
for the choice of free parameters for obtaining the adapted coefficients of the
modified Runge-Kutta methods in Table [I]
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TABLE 1. Choice of free parameters and additional equations

RK4 m=n1=1 a3 =0, ay = aseg =0, by = b3, by + by + b3+ by =1

1
RK38 m =1, a3 = BEL (41 = Qq3, Qg2 = —1, by = b3, by +ba + b3 +0y =1
1 2 2—2
RK-Gill |1 =my =1, ag = 5(\/5— 1), an =0, agp = _§’ by = 6\/_’

Remark 3.4. For s = 4, substitute the parameters from Table [l] into equation
(3.6) and solve for the remaining coefficients. The resulting coefficients of the
modified Runge-Kutta methods are given below:

Modified Classical Runge-Kutta method.

2 24 26 28

— 14+ =
2 + 8 * 384 * 46080 * 10321920

+0(z1Y)

22 54 6126 27728
s s " 331~ 26080 T 2064332 T O

1 22 24 25 28
G20 = 593 T 3340 T 645120 T 185794560 O(=")
a2 = % B ; + % - 4%2260 + 73;;20 +0(=") (3.7
2 4 6 8
aas =1+ 5_4 + 1320 + 32;560 * 92857280 +0(=")
2 4 6 8
br=bs= é B 7220 + 802640 B 96726800 + 1226544096 +0(=")
2 4 6 8
by = by = % + % - 8()2640 * 96726800 - 1226;44096 +0(=")
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Modified Classical Runge-Kutta—% method.

2 Z4 Z6 ZS

=1 E * 7011 * 521380 * 261530520 T O
m=1- %2 + 22443 - 1(2);:635 * 20167627815 +0(=")
=1t %2 N 6148 * 5;;0 N 88416719Zéj4o +0()

2 4 6 8

- % + % + 292160 + 110;2480 * 7142;67040 +0(")
agz =1~ 12622 * 1320 B 22%Zf96 +0(%)
Gar = agy =1+ 3;;110 + 20i20 B 108288640 +0(=")

2 4 6 8

br=bs= é a 1240 - 18?440 B 587%162600 * 232719127760 +0(")
by — by 3 22 24 N 3126 B 1328 L0

B * 1440 181440 ' 587865600 23279477760

Modified Runge-Kutta-Gill method.

2 24 26 ZS

z
2 * 8 * 384 * 46080 + 10321920 +0(0)

_ 1 3\ .2 13 1 4 1 157\ .6
my =1+ Wi_§)z+<@_w> +<240\/§_46080)Z
o (st 17 )z +O(:1)

3440640 ~ 40320v2

22 24 28 28

10
T 48 * 3840 * 645120 * 185794560 +0(=7)

1

2
_ 1 1 5 61 233\ .6
d32 = <1 - 75) - (Wi 48> Z5 (3840 384\/) z+ (46080\/5 - 215040) z

+ (18?%2;60 - 2064237874\@) 2+ 0(21)
1 22 24 28 28
1 J— — O(10
tas =\ 1+ \/5) *+ 51" 1920 T 329560 T 92m07as0 T O )
1 22 24 28 28
bj=b+4=- — — — O( 210
PEOTAES 720 * 50610 ~ 9676800 T 1226044006 T O
by 1(2+f)+ A, 2z +0(2")
6 360 40320 ' 4838400 613122048 ‘

(3.8)

(3.9)

Remark 3.5. We note that the coefficients (3.7]) appeared in Vanden Berghe [33].

Generally the coefficients derived are subject to cancellations for small values of z,
hence we present their Taylor series expansions which must be used. Furthermore,
we have verified the order conditions of the methods to be of order four using the

order conditions derived in Ehigie et al. [I5].
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4. A NOTE ON FREQUENCY ESTIMATION

Accurate frequency estimation is vital for the numerical simulation of initial
value problems using modified-coefficient methods, as the coefficients depend on
both the step size and the frequency w. D’Ambrosio et al. [14] proposed a
frequency-based formula for simulating Belousov—Zhabotinsky reactions using ex-
perimental data, and various researchers have addressed this issue in the context
of oscillatory ODEs.

Ixaru et al. [23] introduced a frequency estimation approach based on the
leading term of the local truncation error, later refined by Van de Vyver [32].
More recently, Vigo-Aguiar and Ramos [34] developed a method for determining
an optimal frequency noting its dependence on the numerical method, integration
interval, and step size.

Ehigie and Okunuga [I7] applied this optimisation to the Fermi-Pasta—Ulam
system, achieving high accuracy by minimising the Hamiltonian error via the
Golden Section Search technique:

F(w) = |H(yo, x0) — H(yn,zn)|,

where H(xy,yn) is the total energy function.
In this study, we adopt this frequency estimation strategy for the chemical
systems introduced in Section [2]

5. NUMERICAL ANALYSIS

To demonstrate the effectiveness of the newly derived methods, we apply them
to two practical chemical reaction kinetics problems. The new methods are
referred to as follows: the Modified Classical Runge-Kutta method, Modified
Classical Runge-Kutta %, Trigonometrically fitted Runge-Kutta Method Simos
[30], Modified Runge-Kutta-Gill, denoted as EFRK4A, EFRK4B, EFRK4C and
EFRK4D, respectively. For comparison, the Classical Runge-Kutta method,
Classical Runge-Kutta %, and Runge-Kutta-Gill method are denoted as RK4A,
RK4B and RK4C, respectively.

The accuracy of the methods is evaluated based on the stepsizes and their
corresponding maximum global error. Additionally, the time evolution of the
reacting species and their phase plots are presented.

First, we analyse the Lotka-Volterra system, described by , which exhibits
oscillatory behaviour and autocatalysis—a phenomenon where the growth rate of
chemical species S; increases with its own concentration. The system has a
unique steady state at ([Sa]*,[S2]*)=(d/k,r/k).

The Jacobian matrix at the steady state is given by

= A Y= (8 )

The eigenvalues of .J are A\ » = i4v/7d, where (i = —1). These purely imaginary
eigenvalues indicate that the steady state ([S1]*, [S2]*) is a centre, and the system’s
trajectories form a closed periodic orbit orbits around this steady state. Thus,
for any initial value ([S1]o, [Sa)o), the system exhibits a periodic solution.
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To verify this, we simulate the system using parameter values r = 1, k = 1,
d = 1. These parameters result in a period solution with an approximate period
of T = 4.61487051945103. The initial concentration of the species are set to
([1]os [S2lo) = [2.2].

The simulation is performed on the time interval [0,500] using a stepsize h =
1/27, 4,5,6,7. Both the modified Runge-Kutta presented in this study and the
traditional Runge-Kutta methods are employed for numerical integration. For
the modified methods, the ”best fitting frequency” is determined and applied.

—<— EFRK4A
—b>— EFRK4B
—&— EFRK4C
—<— EFRK4D
—H&— RK4A
—*— RK4B
—6&— RKA4C

log, (MGE)

45 5 55
IoglO(Number of function evaluations)

FIGURE 1. Accuracy plots of the methods

Fig. |1 displays the maximum global error for each method, plotted on a deci-
mal logarithmic scale against the stepsize. From the figure, it is evident that the
modified methods provide superior accuracy compared to their classical coun-
terparts. Among these, the Runge-Kutta-Gill method yields the most accurate
result.

Furthermore, the time evolution of the species concentrations and the phase
plot diagram are presented in Fig. 2 The phase plot vividly illustrates the peri-
odic trajectories, confirming the oscillatory nature of the Lotka-Volterra system
and the enhanced accuracy achieved with the modified Runge-Kutta methods.
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FIGURE 2. Time evolution and phase plots

Finally, we simulate the Brusselator system for positive constants A and B,
comparing the phase plots generated for A = 1 and B = 1.7 over the interval
[0,100]. The simulation are conducted using all the modified Runge-Kutta meth-
ods and their classical counterparts, with initial values ¢ = 1 and 9 = 1 for
stepsizes h = 1/27, 4,5,6,7. The maximum global error are presented in Fig.
to illustrate the comparative performance of the methods.

—<— EFRK4A
—P>— EFRK4B
—&— EFRK4C
—<— EFRKA4D
—&— RK4A
—*— RK4B
—©— RK4C

3.8 4 4.2 4.4 4.6 4.8 5
IoglO(Number of function evaluations)

FI1GURE 3. Accuracy plots of the methods

Nicholis and Prigogine [27], in their bifurcation analysis of the Brusselator
system, established conditions that determine the system’s stability. According
to their findings, the system becomes unstable when B > A? 4+ 1 and remain
stable solution when B < A% + 1. To validate these propositions, simulations
were performed using the modified Runge-Kutta-Gills method for both unstable
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and stable scenarios: A =1, B = 3 (unstable) and A = 1, B = 1.7 (stable). The
results obtained with the modified Runge-Kutta methods effectively demonstrate
the system’s behaviour under these conditions.

The phase plot and time evolution of the unstable solution (A =1, B = 3) is
shown in Fig. {4} revealing chaotic behaviours characterised by irregular oscilla-
tions, indicative of instability. Conversely, the phase plot for the stable solution
(A =1, B = 1.7) presented in Fig. [5|illustrates an attractor or fixed point at
(A,B)=(1,1.7), demonstrating a stable interaction between the system compo-
nents for the parameters. These findings confirm the theoretical propositions and
highlights the accuracy of the modified Runge-Kutta-Gill methods in capturing
the dynamics of the Brusselator system.

)
.5 ¥20)

ST
(AT

815‘\\‘ H\\ M‘
15F
: \w‘\‘\u\\\\“\j“\‘\

°5u\/v‘Jvu/uv/v/\/\ 1

s

Concentration of Species v(t)

0 20 40 60 80 100 ~o 05 1 15 2 25 3 35 4
Time evolution (s) Concentration of Species u(t)
Y

FIGURE 4. Time evolution and phase plots for the unstable pa-
rameters (A =1, B = 3)
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FiGURE 5. Time evolution and phase plots for the unstable pa-
rameters (A =1, B=1.7)

Summarily, the Runge-Kutta-Gill methods is the most accurate of all the mod-
ified Runge-Kutta methods presented in subsection [3.2]

6. CONCLUSION

This paper investigates the effective simulation of two practical oscillatory
chemical reaction processes. The oscillatory properties of the systems are ad-
dressed through the development of modified exponentially fitted Runge-Kutta
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methods, in contrast to classical methods with constant coefficients. Two clas-
sical Runge-Kutta methods and a Runge-Kutta-Gill method of order four have
been modified using the concept of exponential fitting, with the fitting conditions
of these methods presented in detail.

The proposed exponentially fitted methods reduce to classical methods when
z — 0. A key advantage of these new methods lies in their ability to estimate
the frequency of oscillation. While many researchers determine frequency using
the principal frequency derived from the truncation error, this approach may
not always be appropriate. Vigo-Aguiar and Ramos [34] emphasised that the
choice of frequency may depend on factors such as the differential equation, initial
conditions, and the integration interval. In this study, we have adopted the
frequency selection approach outlined by Vigo-Aguiar and Ramos [34].

As future work, the exponential fitting conditions could be extended to diagonal
implicit methods, which are well-suited for implementation within the class of
implicit methods for stiff-oscillatory systems.
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