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A DERIVATIVE–FREE BLOCK HYBRID METHOD FOR NUMERICAL
QUADRATURE

RICHARD O. AKINOLA∗, EZEKIEL O. OMOLE, JOSHUA SUNDAY,
AND ELEOJO R. AKOR

ABSTRACT. We derive a new ninth-order block hybrid method for the nu-
merical solution of systems of differential equations and we compare results
of numerical experiments with an already existing method in the literature.
Both methods are bye-products of linear multistep methods using the inter-
polation and collocation approach. We show computationally that in the ab-
sence of round-off errors, the solution obtained by solving systems of differen-
tial equations by the existing block hybrid method derived by differentiating
the continuous scheme at a particular off–grid point is the same as those ob-
tained in the new method which is derivative free. Besides, the new block
hybrid method which is derivative free results in a well conditioned system
as opposed to the ill–conditioned one in the literature. Therefore, providing
an answer to Shampine’s claim that matrices arising from the numerical ap-
proximation of stiff initial value problems using Linear Multistep Methods
are mostly ill–conditioned. Finally, we showed computationally how an LU-
type preconditioned Quasi Minimal Residual with a fixed default tolerance
reduced the condition number of the old and new methods, with the latter
resulting in the smallest minimum norm of residual.

1. INTRODUCTION

In this paper, we derive a new ninth-order, self-starting, zero and A(α)-stable,
’derivative-free’ and convergent block hybrid method for the numerical in-
tegration of (non)-linear, (non)-stiff systems of differential equations. Both
methods are bye-products of linear multistep methods using the collocation
approach which is not strange why ill-conditioning arose from the matrices
derived from them confirming the statement made by Shampine [1]. We show
computationally that in the absence of round-off errors, the solution obtained
by solving systems of differential equations by the existing block hybrid method
[2] derived by differentiating the continuous scheme at a particular off-grid
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point is the same as those obtained by the new method which is derivative
free. Several other authors Adee et al [3], Aboiyar et al [4], Fotta et al [5], Ayinde
et al [6], [7, 8, 9], Odejinde and Adeniran [10] have used the ’derivative-free’
approach in deriving block hybrid methods without neither mentioning ill-
conditioning nor any comparison made with other methods which used it.

The term ’derivative-free’ is loosely used in this context to mean that the new
block hybrid method does not involve finding the derivative of the continuous
scheme at any off-grid. In addition to this, we compared results of numerical
experiments with the exact solution (where it exists) as well as an already ex-
isting method in the literature. Besides, in all numerical examples considered
in this paper the new block hybrid method gives better conditioned system
with condition numbers less than a quarter of those obtained in [2]. The con-
dition number of a matrix is defined as the ratio of the largest to the smallest
singular value of a matrix [11]. A high condition number means solving an
ill–conditioned system.

1.1. Literature Review. Ill-conditioning is a phenomenum often encountered
when solving systems of linear equations and aside the fact that it leads to loss
of the logarithm of the condition number significant digits, it also means one is
solving a nearly singular system [12, 13, 14, 15]. This means there is a need to
find an appropriate preconditioner to reduce the condition numbers. We used
a LU-type [16] preconditioner with a Quasi-Minimal Residual (QMR) iterative
solver [17, 18, 19, 20, 21, 22, 23, 24]. The choice of the LU-type preconditioner
stems from the work of Gogoleva [25], while QMR is informed by Demmel’s
[26, p. 321] decision tree for choosing a particular iterative method. Besides,
using the default tolerance, both GMRES and Bi-CGStab did not give better
approximations except QMR albeit due to the ill–conditioning of the resultant
matrices.

Furthermore, the results of numerical experiments where an LU-type pre-
conditioned Quasi Minimal Residual (QMR) with a fixed default tolerance
showed that the new block hybrid method gives better norm of residual than
the one in Akinola et al [2]. Hence, going forward, this paper serves as a pre-
caution as there is no need to differentiate the continuous scheme and evalu-
ating at any off–grid point in deriving first–order derivative methods for the
numerical integration of first–order IVPs.

In the earlier work, the method shares loads of perculiarities with the present
work in the sense that they are both of 9th–order, zero and A(α)-stable albeit
α = 74◦ (α = 10◦ in the present work) and convergent. In fact, as shown with
numerical examples in [2], the existing method has less number of function
evaluations and out-performed a 14th–order method presented in [27]. Nev-
ertheless, as will be discovered in this paper, it suffers the disadvantage that
the corresponding matrix obtained in comparison to the one in this work had
very high condition numbers.

Omole [28] used 4-grid and four–off grid points: {1
2 , 3

2 , 5
2 , 7

2} for the solution
of fourth order initial value problems. In the earlier work [2], we used the
following three-off grid points {3

2 , 5
2 , 7

2} and the four-grid points {1, 2, 3, 4} as
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interpolating points while in this present work, we retained the same four-
grid points but added the off grid point 9

2 resulting in the following four-off
grid interpolating points { 3

2 , 5
2 , 7

2 , 9
2}. It should be mentioned that while the

added off-grid point was an interpolating point in the present work, in the
former, it was a collocation point, for more on off grid points the interested
reader should read [29, 30, 31, 32, 33, 34, 35].

Some authors have used Hermite, Legendre, Laguerre, Chebyshev polyno-
mials as basis functions in deriving their numerical methods, but here, we use
the interpolation and collocation approach of Onumanyi et al [36].

2. MATERIALS AND METHODS

In this section, we present the new block hybrid method, show that it is of
order nine and present the corresponding error constant. This is then followed
by showing that the new method is zero stable, convergent, A(α)-stable with
α = 10◦ and to cap it all we present a newton-based algorithm for the new
block hybrid method. We begin by pointing out the marked differences be-
tween the new method and the one in [2].

In describing the new method, we assume a first derivative block hyrid
method

yn+j = α0(x)yn + h ∑
j

β j(x) fn+j,

for j ∈ {0, 1, 3
2 , 2, 5

2 , 3, 7
2 , 4, 9

2}. We used

y(x) =
9

∑
i=0

aixi, (2.1)

as a basis function where the ai’s are nonzero polynomial coefficients. In this
context, for j ∈ {0, 1, 3

2 , 2, 5
2 , 3, 7

2 , 4, 9
2}, we arrived at the 10 by 10 system of

equations

y(xn) = yn

y′(xn+j) = fn+j,

from where the ai’s are found. Here, a0 equals α0; the ai’s for i = 1(1)9 re-
spectively equals β0, β1, β 3

2
, β2, β 5

2
, β3, β 7

2
, β4, β 9

2
. Plugging the continuous co-

efficients into the continuous formulation,

y(x) = α0(x)yn + h ∑
j

β j(x) fn+j

= α0(x)yn + h
[
β0(x) fn + β1(x) fn+1 + β 3

2
(x) fn+ 3

2
+ β2(x) fn+2

+ β 5
2
(x) fn+ 5

2
+ β3(x) fn+3 + β 7

2
(x) fn+ 7

2
+ β4(x) fn+4 + βn+ 9

2 (x) f
n+ 9

2

]
.

If we let w = xn+1 − x for ease of notation, then the continuous coefficients
are as shown in Appendix A. Notice that unlike the earlier work in [2] in which
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to obtain the discrete scheme for yn+1, we differentiated the continuous formu-
lation before evaluating it at w = −7h

2 . Here, to obtain the discrete scheme for
yn+1, we did not differentiate the continuous scheme at all and that is why we
used the term ”derivative–free” in the title of this paper, rather we evaluated
it at w = 0. The derivation of the new block hybrid method is as explained
below.

We evaluated the continuous formulation at w = 0,− h
2 ,−h,−3h

2 ,−2h,−5h
2 ,−3h,−7h

2 ,
we obtained respectively the discrete schemes which becomes the block hybrid
method
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yn+1 = yn +
h
[
473977 fn + 6190578 fn+1 − 14256264 fn+ 3

2
+ 21960504 fn+2 − 22333032 fn+ 5

2

]
2041200

+
h
[
15056670 fn+3 − 6504408 fn+ 7

2
+ 1635759 fn+4 − 182584 fn+ 9

2

]
2041200

, (2.2)

yn+ 3
2
= yn +

h
[
20759 fn + 287046 fn+1 − 581818 fn+ 3

2
+ 936468 fn+2 − 958194 fn+ 5

2
+ 647690 fn+3

]
89600

−
h
[
280206 fn+ 7

2
− 70533 fn+4 + 7878 fn+ 9

2

]
89600

, (2.3)

yn+2 = yn +
h
[
59143 fn + 814932 fn+1 − 1601616 fn+ 3

2
+ 2762856 fn+2 − 2761488 fn+ 5

2

]
255150

+
h
[
1860780 fn+3 − 803952 fn+ 7

2
+ 202221 fn+4 − 22576 fn+ 9

2

]
255150

, (2.4)

yn+ 5
2
= yn +

h
[
605495 fn + 8353350 fn+1 − 16467450 fn+ 3

2
+ 28962900 fn+2 − 27460530 fn+ 5

2

]
2612736

+
h
[
18890250 fn+3 − 8182350 fn+ 7

2
+ 2060325 fn+4 − 230150 fn+ 9

2

]
2612736

, (2.5)

yn+3 = yn +
h
[
649 fn + 8946 fn+1 − 17608 fn+ 3

2
+ 30888 fn+2 − 28584 fn+ 5

2

]
2800

+
h
[
20990 fn+3 − 8856 fn+ 7

2
+ 2223 fn+4 − 248 fn+ 9

2

]
2800

, (2.6)

yn+ 7
2
= yn +

h
[
2162377 fn + 29837178 fn+1 − 58823814 fn+ 3

2
+ 103389804 fn+2 − 96271182 fn+ 5

2

]
9331200

+
h
[
73295670 fn+3 − 27390258 fn+ 7

2
+ 7276059 fn+4 − 816634 fn+ 9

2

]
9331200

, (2.7)

yn+4 = yn +
h
[
29578 fn + 407232 fn+1 − 800256 fn+ 3

2
+ 1402056 fn+2 − 1294848 fn+ 5

2

]
127575

+
h
[
972480 fn+3 − 317952 fn+ 7

2
+ 123786 fn+4 − 11776 fn+ 9

2

]
127575

, (2.8)

yn+ 9
2
= yn +

h
[
20727 fn + 288198 fn+1 − 574074 fn+ 3

2
+ 1017684 fn+2 − 965682 fn+ 5

2

]
89600

+
h
[
1748170 fn+3 − 278478 fn+ 7

2
+ 141669 fn+4 + 4986 fn+ 9

2

]
89600

. (2.9)



88 R. O. AKINOLA, E. O. OMOLE, J. SUNDAY, AND E. R. AKOR

From the above block hybrid schemes, we obtained the following vectorized
continuous coefficients that will be used in calculating the order:

α0 = −



1

1

1

1

1

1

1

1



, α1 =



1

0

0

0

0

0

0

0



, α 3
2
=



0

1

0

0

0

0

0

0



, α2 =



0

0

1

0

0

0

0

0



, α 5
2
=



0

0

0

1

0

0

0

0



,

and

α3 =



0

0

0

0

1

0

0

0



, α 7
2
=



0

0

0

0

0

1

0

0



, α4 =



0

0

0

0

0

0

1

0



, α 9
2
=



0

0

0

0

0

0

0

1



.
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In the same vein,

β0 =



67711
291600

20759
89600

8449
36450

605495
2612736

649
2800

2162377
9331200

29578
127575

2961
12800



, β1 =



343921
113400

143523
44800

45274
14175

464075
145152

639
200

1657621
518400

6464
2025

144099
44800



, β 3
2
= −



594011
85050

290909
44800

266936
42525

2744575
435456

2201
350

9803969
1555200

266752
42525

287037
44800



, β2 =



101669
9450

234117
22400

51164
4725

268175
24192

3861
350

957313
86400

51928
4725

254421
22400



, β 5
2
= −



310181
28350

479097
44800

153416
14175

1525585
145152

3573
350

5348399
518400

143872
14175

482841
44800



,

and

β3 =



501889
68040

64769
8960

62026
8505

3148375
435456

2099
280

2443189
311040

64832
8505

74817
8960



, β 7
2
= −



30113
9450

140103
44800

14888
4725

151525
48384

1107
350

507227
172800

11776
4725

139239
44800



, β4 =



181751
226800

70533
89600

22469
28350

228925
290304

2223
2800

808451
1036800

13754
14175

141669
89600



, β 9
2
= −



22823
255150

3939
44800

11288
127575

115075
1306368

31
350

408317
4665600

11776
127575

− 2493
44800



.

Next, we state the following lemma with a proof. Lemma 1. Each of the
discrete schemes that constitute the block hybrid method (3)–(10) has order
nine.
Proof. Substituting the above values of α’s, β’s into the formula for calculating
the order of a Linear Multistep Method and after appropriate algebraic simpli-
fications as shown in [37] and [38], we have C0 = C1 = C2 = C3 = C4 = C5 =
C6 = C7 = C8 = C9 = 0. The non–zero error constants (C10) are as tabulated
in Table 1.
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TABLE 1. Error constant of each of the discrete schemes that con-
stitute the block hybrid method.

yi Error Constant C10 6= 0
yn+1 1.809836508548893×10−4

yn+ 3
2

1.785387311662946 ×10−4

yn+2 1.792909807956104×10−4

yn+ 5
2

1.788583195211839 ×10−4

yn+3 1.792689732142857 ×10−4

yn+ 7
2

1.786382437079368 ×10−4

yn+4 1.802861062120321 ×10−4

yn+ 9
2

1.715632847377232 ×10−4

2.1. Zero Stability, Convergence and Region of Absolute Stability of the
New Block Hybrid Method. In this section, we examine the stability prop-
erties of the new block hybrid method and plot its region of absolute stability.
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We start by re-writing the block method in the form :



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





yn+1

yn+ 3
2

yn+2

yn+ 5
2

yn+3

yn+ 7
2

yn+4

yn+ 9
2



=



0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1





yn−7

yn−6

yn−5

yn−4

yn−3

yn−2

yn−1

yn



+ hZ



fn+1

fn+ 3
2

fn+2

fn+ 5
2

fn+3

fn+ 7
2

fn+4

fn+ 9
2



+ h



0 0 0 0 0 0 0 67711
291600

0 0 0 0 0 0 0 20759
89600

0 0 0 0 0 0 0 8449
36450

0 0 0 0 0 0 0 605495
2612736

0 0 0 0 0 0 0 649
2800

0 0 0 0 0 0 0 2162377
9331200

0 0 0 0 0 0 0 29578
127575

0 0 0 0 0 0 0 2961
12800





fn−7

fn−6

fn−5

fn−4

fn−3

fn−2

fn−1

fn



,
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where

Z =



343921
113400 −594011

85050
101669
9450 −310181

28350
501889
68040 −30113

9450
181751
226800 − 22823

255150

143523
44800 −290909

44800
234117
22400 −479097

44800
64769
8960 −140103

44800
70533
89600 − 3939

44800

45274
14175 −266936

42525
51164
4725 −153416

14175
62026
8505 −14888

4725
22469
28350 − 11288

127575

464075
145152 −2744575

435456
268175
24192 −1525585

145152
3148375
435456 −151525

48384
228925
290304 − 115075

1306368

639
200 −2201

350
3861
350 −3573

350
2099
280 −1107

350
2223
2800 − 31

350

1657621
518400 −9803969

1555200
957313
86400 −5348399

518400
2443189
311040 −507227

172800
808451
1036800 −

408317
4665600

6464
2025 −266752

42525
51928
4725 −143872

14175
64832
8505 −11776

4725
13754
14175 − 11776

127575

144099
44800 −287037

44800
254421
22400 −482841

44800
74817
8960 −139239

44800
141669
89600

2493
44800



.

From the above equation and for the purpose of the discussion in this section,
we define the matrices W, X and Y as follows:

W =
[
α1 α 3

2
α2 α 5

2
α3 α 7

2
α4 α 9

2

]
=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

X =
[
0 0 0 0 0 0 0 −α0

]
=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


,
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and

Y =



0 0 0 0 0 0 0 67711
291600

0 0 0 0 0 0 0 20759
89600

0 0 0 0 0 0 0 8449
36450

0 0 0 0 0 0 0 605495
2612736

0 0 0 0 0 0 0 649
2800

0 0 0 0 0 0 0 2162377
9331200

0 0 0 0 0 0 0 29578
127575

0 0 0 0 0 0 0 2961
12800



.

Now, using the matrices W and X as defined above, we study the zero stability
of the block hybrid method as shown below

det(RW − X) = R8 − R7 = 0,

R equals zero (multiplicities 7) and R equals one. The new method is zero
stable because the roots of the characteristic polynomial (i.e., R = 0 has mul-
tiplicities seven and R = 1 as shown above) have respectively modulus zero
which is less than or equal to one and those of modulus one (i.e, R = 1) is
distinct. In addition to this, according to Henrici [39], the new block hybrid
method is consistent because each of the discrete schemes that constitute the
block is of order nine as shown in Lemma 1 which is greater than one. There-
fore, since the new method is zero stable and consistent, it is convergent (see,
for example, [40, 41, 42]).

In plotting the region of absolute stability of the method, we used the stabil-
ity polynomial

M(z) = |Ww− X−Yw− Zwz|, z = λh, w = eiθ, i2 = −1, θ ∈ [0, 2π],

and y′ = λy is the usual test equation. Thus,
M(z) = |Ww− X−Yw− Zwz|

=
7560w8 − 945w7)z8 + (−55308w8 − 10221w7)z7 + (254502w8 − 65628w7)z6

1935360

+
(−858704w8 − 296212w7)z5 + (2185960w8 − 976360w7)z4 + (−4139520w8 − 2331840w7)z3

1935360

+
(5550720w8 − 3857280w7)z2 + (−4730880w8 − 3978240w7)z + 1935360w8 − 1935360w7

1935360
.

Newton’s method was used to obtain the roots of M(z) = 0 where the region
of absolute stability is defined as

E(w, z) = {z ∈ C : ρ(w, z) = 1, |w| ≤ 1},
which is as shown in Figure 1.
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FIGURE 1. The stability region of the ninth–order block hybrid
method are the red patches on the imaginary axis.

The above analysis now leads to the following algorithm and implementa-
tion.

2.2. Implementation and Algorithm. In this section, we show how Newton’s
method is implemented in solving the nonlinear system of eight equations in
eight unknowns of (3)–(10) i.e., F(y) = 0 where the unknowns are yi, for

i =
{

n + 1, n +
3
2

, n + 2, n +
5
2

, n + 3, n +
7
2

, n + 4, n +
9
2

}
.

We make it categorically clear at this juncture that we are only interested in
the unknown yn+1 but the contribution from the remaining contribute to the
accuracy of the block hybrid method. Newton’s method applied to F(y) = 0
is as follows

G(y(k))∆y(k) = −F(y(k)), (2.10)

where G(y(k)) is the Jacobian of F(y). Find the PLU factorization of G(y(k)), i.
e.,
PG(y(k)) = LU, where P is a permutation matrix, L and U are lower and upper
triangular matrices. With PG(y(k)) = −PF(y), if we let r = −PF(y(k)), then
we first solve Lv = r and U∆y(k) = v for ∆y(k). Only one PLU factorization
is needed at each iteration. The algorithm self starts and does not need any
predictor–corrector to predict the starting values. The algorithm is given below
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Algorithm 2.1. Input: Step size, tol, the differential equation and correspond-
ing initial conditions, Jacobian of the new method.
For k = 0, 1, 2, · · · ,

(1) Evaluate F(y(k)) from (3)–(10).
(2) Factorize [L, U, P] = LU(G(y(k))).
(3) Solve Lv(k) = r(k) for v(k).
(4) Solve U∆y(k) = v(k) for ∆y(k).
(5) Update y(k+1) = y(k) + ∆y(k).
(6) Continue until Netwon’s method converges.

Output: yk+1.

Stop the algorithm as soon as ‖∆y(k)‖ < tol and ‖F(y(k))‖ < tol, where
tol is a user defined tolerance.

3. RESULTS AND DISCUSSION

In this section, we present the result of seven numerical experiments to ascer-
tain the performance of our method in comparison with those of Akinola et al
[2], [43], [44], [45] and [46]. Results are presented by means of figures and ta-
bles. Throughout this section and where necessary, we computed the cputime

thrice before finding the average.

Example 3.1. The non–linear stiff problem [43]

u′1(x) = −2u1(x) + u2(x) + 2 sin(x), u1(0) = 2,

u′2(x) = 998u1(x)− 999u2(x) + 999(cos(x)− sin(x)), u2(0) = 3.

The solution to this problem can be found in Figure 2 and Table 2. The result
of the table shows that the new method outperformed those of Yakubu and
Sibanda [43] which is a very recent study.

FIGURE 2. The solution of Example 3.1 and the exact on x =
[0, 20] with h = 0.1.
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TABLE 2. Max. Error comparison table for Example 3.1.

h Max Error [43] Max Error [44] Max Error (Our Method)
4×10−1 4.9×10−04 8.9×10−07 3.0×10−08

2×10−1 2.2×10−09 5.9×10−09 6.4×10−11

1×10−1 3.9×10−11 4.5×10−11 1.1×10−13

5×10−2 6.4×10−13 2.9×10−13 1.5×10−14

Example 3.2. The Van–der Pol Oscillator

u′1(t) = u2(t), u1(0) = 2,

u′2(t) = µ(u2(t)− u2
1(t)u2(t))− u1(t), u2(0) = 0 and µ = 5.

We compared the results of our method with those of ode15s and it is shown
in Figure 3.

FIGURE 3. Result of Example 3.2 for h = 0.01.

Example 3.3. We consider the system [43]

v′1(t) = −21v1 + 19v2 − 20v3

v′2(t) = 19v1 − 21v2 + 20v3

v′3(t) = 40v1 − 40v2 − 40v3,
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TABLE 3. Max. Error comparison table for Example 3.3

Steps Max Error [43] Max Error [45] Max Error [46] Max Error
(Our Method)

2.0×101 3.3×10−03 3.0×10−02 7.7×10−02 7.8×10−03

4.0×101 1.1×10−04 3.5×10−03 1.2×10−02 2.6×10−04

8.0×101 2.4×10−06 2.2×10−04 1.9×10−04 1.3×10−06

1.6×102 4.1×10−08 5.8×10−06 1.5×10−06 5.8×10−09

3.2×102 6.5×10−10 1.1×10−07 3.1×10−08 1.6×10−11

on the interval [0, 4] with [v1(0), v2(0), v3(0)]T = [1, 0,−1]T and exact solution

v1(t) = 0.5[exp(−2t) + exp(−40t)(cos(40t) + sin(40t))]
v2(t) = 0.5[exp(−2t)− exp(−40t)(cos(40t) + sin(40t))]
v3(t) = exp(−40t)[sin(40t)− cos(40t)].

The results of this example are in Table 3.

The last column of Table 3 shows that our method performed better than
those of [43], [45] and [46].

Example 3.4. The non–linear stiff Kaps problem [47]u′1(x)

u′2(x)

 =

−(1002u1(x) + 1000u2
2(x))

u1(x)− u2(x)− u2
2(x)

 , with u1(0) = 1, u2(0) = 1.

The solution is u1(x) = exp(−2x) and u2(x) = exp(−x). Results of numerical
experiments using a constant step size of h = 0.1 are shown in Table 4.

Though the new method and the one in [2] are different, Table 4 shows that
in the absence of round-off errors, the results are the same. In fact, in this ex-
ample, the condition number of the matrix of the system solved at the root by
the hybrid method in Akinola et al [2], is more than four times (92296 versus
22860) that of the new method which is derivative free. Though one has a
smaller condition number than the other but in fairness, both condition num-
bers are large and that is why in the last section of this paper, we show how
these can be circumvented via preconditioning. Besides, as shown in columns
four and seven the cputime is lesser than that of Akinola et al [2]. Results of
simulation showed that our method performed at par with the exact solution
for both u1(x) and u2(x).
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Example 3.5. The non-linear stiff problem of Gear [48] which has no solution,

u′1(x) = −0.013u1 − 1000u1u3

u′2(x) = −2500u2u3

u′3(x) = −0.013u1 − 1000u1u3 − 2500u2u3,

with initial conditions u1(0)
u2(0)
u3(0)

 =

1
1
0

 ,

and h = 0.1.

Example 3.6. The linear stiff IVP [49]

u′1(x)

u′2(x)

u′3(x)

u′4(x)


=



−u1(x)

−10u2(x)

−100u3(x)

−1000u4(x)


,



u1(0)

u2(0)

u3(0)

u4(0)


=



1

1

1

1


,

with a fixed step size of h = 0.1.

Results of the numerical experiment is as shown in Figure 3.6 and Table 5.
A closer look at Table 5 reveals that there is no huge disparity in the cputime

between the new method and those of Akinola et al [2]. But just as in the previ-
ous example, we noticed that the condition number of the system in Akinola et
al [2], is four times that of the present work (217309 against 54214). This might
have accounted for the slight difference between the last few digits for all the
u values for both x = 5 and x = 50. However, aside the better condition num-
ber of the new method, there is not much significant differences in the results.
Figure 3.6 also reveals that aside between x ∈ [0.1, 0.2] for both u3 and u4 the
new method performed favourably with the exact in the absence of round off
errors.

Example 3.7. The Fatunla [50] problem is well known to be stiff

u′1(x)

u′2(x)

u′3(x)

u′4(x)

u′5(x)

u′6(x)


=



−10u1(x) + 100u2(x)

−100u1(x)− 10u2(x)

−4u3(x)

−u4(x)

−0.5u5(x)

−0.1u6(x)


,



u1(0)

u2(0)

u3(0)

u4(0)

u5(0)

u6(0)


=



1

1

1

1

1

1


.
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TABLE 4. Absolute errors of our method with [2] on Example 3.4.

x ui Akinola et al CPU κ(G) New CPU κ(G)
[2] Time(s) Method Time(s)

5 u1 4.84× 10−07 7.23×10−5 92309 4.84× 10−07 6.96×10−5 22863
u2 5.28× 10−08 5.28× 10−08

50 u1 3.96× 10−46 8.66×10−5 92296 3.96× 10−46 8.56×10−5 22860
u2 1.50× 10−27 1.50× 10−27

TABLE 5. Absolute errors of our method with Akinola et al [2],
on Example 3.6.

x ui Akinola et al CPU κ(G) New CPU κ(G)
[2] Time(s) Method Time(s)

u1 4.88×10−15 1.05×10−4 217309 4.94×10−15 1.05×10−4 54214
5 u2 2.47×10−25 2.47×10−25

u3 0 0
u4 0 0
u1 1.54×10−33 1.06×10−4 217309 1.41×10−33 1.16×10−4 54214

50 u2 0 0
u3 0 0
u4 0 0

From Table 6, it is obvious that the explanations given in the previous exam-
ples holds sway except the fact that there is a clear difference in the cputimes

albeit the new method had a slightly higher cputime than that of Akinola et al
[2]. Nevertheless, there is no difference in accuracy.

TABLE 6. Absolute errors of our method with [2] on Example 3.7.

x ui Akinola et al CPU κ(G) New CPU κ(G)
[2] Time(s) Method Time(s)

u1 2.60× 10−22 1.59×10−3 19539 2.60×10−22 1.68×10−3 4865
5 u2 8.02× 10−23 8.02×10−23

u3 8.64× 10−16 8.64×10−16

u4 4.88× 10−15 4.94×10−15

u1 0 1.68×10−3 19539 0 1.73×10−3 4865
50 u2 0 0

u3 0 0
u4 1.39×10−033 1.41×10−33

3.1. Preconditioning Strategies. As shown in the previous section, we en-
countered ill–conditioning in the last three numerical experiments considered.
In this section, we used an LU–type preconditioner to differentiate between
the performance of the two methods under discussion in this paper. All plots
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were on a semilogy scale and in some selected numerical examples in the last
section, the new method had the smallest norm of residual. Next, we start by
presenting how to implement QMR based algorithm below.

3.1.1. Implementation and Algorithm. We find the LU factorization of the matrix
G as the preconditioner such that M = LU(G) without filling [25], where L
and U are Lower-Upper triangular matrices. We find the LU factorization of G
[16], that is M = LU(G) = M1M2, where M1 = L and M2 = U. Since M1 and
M2 are triangular matrices, M is easy to invert because it is the product of two
triangular matrices. We solve the system

G∆y = −F,

by replacing it with the preconditioned system

M−1
1 GM−1

2 M2∆y = −M−1
1 F.

Hence, we let Ĝ = M−1
1 GM−1

2 , ∆ŷ = M2∆y and F̂ = −M−1
1 F and solve for ∆ŷ

in
Ĝ∆ŷ = F̂,

using the Quasi-Minimum-Residual (QMR) iterative method [17, 18, 19]. There-
fore, we solve

M2∆y = ∆ŷ,

to obtain ∆y. This now leads to the following corresponding algorithm.

Algorithm 3.1. Input:Same as Algorithm 2.1 above.
For k = 0, 1, 2, · · · ,

(1) Form F(y(k)).
(2) Find the LU factorization of [M1, M2] = LU(G(y(k))).
(3) Solve G(y(k))∆y(k) = F(y(k)), for ∆y(k) using QMR, that is

[∆y(k), FLAG, RELRES, ITER, RESVEC] = qmr(G(y(k)),−F(y(k)), [ ], [ ], M1, M2);

(4) Apply Newton update y(k+1) = y(k) + ∆y(k).
(5) Continue until convergence.

Output: yk+1.

In each of the following Figures 4, 5, 6 and 7 for both x = 5 as well as x = 50,
we compared the residual norm versus number of iterations upon an applica-
tion of the preconditioned QMR algorithm on the four numerical examples of
the previous section. With a default tolerance of 10−6 the results of numerical
examples showed that QMR converged after two iterations with the residual
norm in the present work less than that of Akinola et al [2], which was our
aim. Hence, the new method gives better results asides being well conditioned
without preconditioning than an earlier work in the literature. Therefore, we
recommend the new method for the numerical integration of differential equa-
tions.
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(A) x = 5. (B) x = 50.

FIGURE 4. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.4.
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(A) x = 5

(B) x = 50

FIGURE 5. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.5.
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(A) x = 5

(B) x = 50

FIGURE 6. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.6.
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(A) x = 5 (B) x = 50

FIGURE 7. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.7.

Table 7 shows the gains made at reducing the condition numbers in both
methods using an LU–type preconditioned QMR.

TABLE 7. Condition number of the preconditioned system.

Example Size of Ĝ nnz(Ĝ) κ(Ĝ)
3.4 16×16 230 1.000
3.5 24×24 402 1.000
3.6 32×32 232 1.000
3.7 48×48 462 1.000

4. CONCLUSION

We developed a new derivative–free, zero stable, convergent block hybrid
linear multistep method for the numerical approximation of stiff and non–
stiff IVPs. It was observed that the new method gave favourable results that
the works of [43], [45] and [46] in terms of maximum absolute error. We also
showed computationally that the new method when compared to another ex-
isting ninth–order block hybrid method gives the same result with better con-
dition numbers. In addition, applying an LU–type preconditioner using a
Quasi-Minimal Residual iterative method showed that the new method gives
a smaller residual norm than the existing method though both converged to
the default tolerance with the same number of iterations.
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APPENDIX A. CONTINUOUS COEFFICIENTS

In this Appendix we present the continuous coefficients. The continuous
coefficients are the elements of the first row of the inverse of D.

α0(w) = 1,

β0(w) = −160w9 + 2520hw8 + 16560h2w7 + 58800h3w6 + 121842h4w5

2041200h8

− 147735h5w4 + 98010h6w3 + 28350h7w2 − 473977h9

2041200h8 ,

β1(w) =
320w9 + 4680hw8 + 27360h2w7 + 78960h3w6 + 102564h4w5

113400h8

− 9135h5w4 + 197940h6w3 + 237330h7w2 + 113400h8w− 343921h9

113400h8 ,
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β 3
2
(w) = −1120w9 + 15750hw8 + 86760h2w7 + 225750h3w6 + 223524h4w5

85050h8

− 171675h5w4 + 578340h6w3 + 396900h7w2 − 594011h9

85050h8 ,

β2(w) =
560w9 + 7560hw8 + 39240h2w7 + 92400h3w6 + 68607h4w5

18900h8

− 101745h5w4 + 210735h6w3 + 99225h7w2 − 203338h9

18900h8 ,

β 5
2
(w) = −1120w9 + 14490hw8 + 70920h2w7 + 152250h3w6 + 84924h4w5

28350h8

− 191205h5w4 + 310380h6w3 + 132300h7w2 − 310181h9

28350h8 ,

β3(w) =
2240w9 + 27720hw8 + 128160h2w7 + 253680h3w6 + 109116h4w5

68040h8

− 336735h5w4 + 487620h6w3 + 198450h7w2 − 501889h9

68040h8 ,

β 7
2
(w) = −160w9 + 1890hw8 + 8280h2w7 + 15330h3w6 + 5292h4w5

9450h8

− 21105h5w4 + 28620h6w3 + 11340h7w2 − 30113h9

9450h8 ,

β4(w) =
1120w9 + 12600hw8 + 52560h2w7 + 92400h3w6 + 26334h4w5

226800h8

− 130725h5w4 + 169890h6w3 + 66150h7w2 − 181751h9

226800h8 ,

β 9
2
(w) = −160w9 + 1710hw8 + 6840h2w7 + 11550h3w6 + 2772h4w5

255150h8

− 16695h5w4 + 21060h6w3 + 8100h7w2 − 22823h9

255150h8 .
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