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A DERIVATIVE-FREE BLOCK HYBRID METHOD FOR NUMERICAL
QUADRATURE
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AND ELEOJO R. AKOR

ABSTRACT. We derive a new ninth-order block hybrid method for the nu-
merical solution of systems of differential equations and we compare results
of numerical experiments with an already existing method in the literature.
Both methods are bye-products of linear multistep methods using the inter-
polation and collocation approach. We show computationally that in the ab-
sence of round-off errors, the solution obtained by solving systems of differen-
tial equations by the existing block hybrid method derived by differentiating
the continuous scheme at a particular off-grid point is the same as those ob-
tained in the new method which is derivative free. Besides, the new block
hybrid method which is derivative free results in a well conditioned system
as opposed to the ill-conditioned one in the literature. Therefore, providing
an answer to Shampine’s claim that matrices arising from the numerical ap-
proximation of stiff initial value problems using Linear Multistep Methods
are mostly ill-conditioned. Finally, we showed computationally how an LU-
type preconditioned Quasi Minimal Residual with a fixed default tolerance
reduced the condition number of the old and new methods, with the latter
resulting in the smallest minimum norm of residual.

1. INTRODUCTION

In this paper, we derive a new ninth-order, self-starting, zero and A(«)-stable,
‘derivative-free” and convergent block hybrid method for the numerical in-
tegration of (non)-linear, (non)-stiff systems of differential equations. Both
methods are bye-products of linear multistep methods using the collocation
approach which is not strange why ill-conditioning arose from the matrices
derived from them confirming the statement made by Shampine [1]. We show
computationally that in the absence of round-off errors, the solution obtained
by solving systems of differential equations by the existing block hybrid method
[2] derived by differentiating the continuous scheme at a particular off-grid
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point is the same as those obtained by the new method which is derivative
free. Several other authors Adee et al [3], Aboiyar et al [4], Fotta et al [5], Ayinde
et al [6], [7,18, O], Odejinde and Adeniran [10] have used the ‘derivative-free’
approach in deriving block hybrid methods without neither mentioning ill-
conditioning nor any comparison made with other methods which used it.

The term "derivative-free’ is loosely used in this context to mean that the new
block hybrid method does not involve finding the derivative of the continuous
scheme at any off-grid. In addition to this, we compared results of numerical
experiments with the exact solution (where it exists) as well as an already ex-
isting method in the literature. Besides, in all numerical examples considered
in this paper the new block hybrid method gives better conditioned system
with condition numbers less than a quarter of those obtained in [2]. The con-
dition number of a matrix is defined as the ratio of the largest to the smallest
singular value of a matrix [11]. A high condition number means solving an
ill-conditioned system.

1.1. Literature Review. Ill-conditioning is a phenomenum often encountered
when solving systems of linear equations and aside the fact that it leads to loss
of the logarithm of the condition number significant digits, it also means one is
solving a nearly singular system [12} 13,14} [15]. This means there is a need to
find an appropriate preconditioner to reduce the condition numbers. We used
a LU-type [16] preconditioner with a Quasi-Minimal Residual (QMR) iterative
solver [17, (18,19, 20, 21} 22, 23, 24]. The choice of the LU-type preconditioner
stems from the work of Gogoleva [25], while QMR is informed by Demmel’s
[26], p. 321] decision tree for choosing a particular iterative method. Besides,
using the default tolerance, both GMRES and Bi-CGStab did not give better
approximations except QMR albeit due to the ill-conditioning of the resultant
matrices.

Furthermore, the results of numerical experiments where an LU-type pre-
conditioned Quasi Minimal Residual (QMR) with a fixed default tolerance
showed that the new block hybrid method gives better norm of residual than
the one in Akinola et al [2]. Hence, going forward, this paper serves as a pre-
caution as there is no need to differentiate the continuous scheme and evalu-
ating at any off-grid point in deriving first-order derivative methods for the
numerical integration of first—order IVPs.

In the earlier work, the method shares loads of perculiarities with the present
work in the sense that they are both of 9th—order, zero and A(«)-stable albeit
a = 74° (« = 10° in the present work) and convergent. In fact, as shown with
numerical examples in [2], the existing method has less number of function
evaluations and out-performed a 14th—order method presented in [27]. Nev-
ertheless, as will be discovered in this paper, it suffers the disadvantage that
the corresponding matrix obtained in comparison to the one in this work had
very high condition numbers.

Omole [28] used 4-grid and four—off grid points: {3, 3,3, 5} for the solution
of fourth order initial value problems. In the earlier work [2], we used the
following three-off grid points {3, 3,7} and the four-grid points {1,2,3,4} as
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interpolating points while in this present work, we retained the same four-
grid points but added the off grid point 3 resulting in the following four-off
grid interpolating points {%, 3, 2, 2]» It should be mentioned that while the
added off-grid point was an interpolating point in the present work, in the
former, it was a collocation point, for more on off grid points the interested
reader should read [29, 30,31, 32,33, 34, 35].

Some authors have used Hermite, Legendre, Laguerre, Chebyshev polyno-
mials as basis functions in deriving their numerical methods, but here, we use
the interpolation and collocation approach of Onumanyi et al [36].

2. MATERIALS AND METHODS

In this section, we present the new block hybrid method, show that it is of
order nine and present the corresponding error constant. This is then followed
by showing that the new method is zero stable, convergent, A(«)-stable with
« = 10° and to cap it all we present a newton-based algorithm for the new
block hybrid method. We begin by pointing out the marked differences be-
tween the new method and the one in [2].

In describing the new method, we assume a first derivative block hyrid
method

Yn+j = ao(x yn+h2ﬁ] X) futjr

forje {0,1, 3,2, 3,3, 5,4, 2}. We used

9
x) =Y ax, (2.1)
i=0

as a basis function where the 4;’s are nonzero polynomial coefficients. In this
conte>.<t, for j € {0,1, 3,2, 3,3, 5,4, 2}, we arrived at the 10 by 10 system of
equations
y(xn) = Yn
V(i) = futjs
from where the 4;’s are found. Here, a4y equals «g; the a;’s for i = 1(1)9 re-

spectively equals Bo, 81, B3, B2, B5, B3, Bz, Ba, Bo. Plugging the continuous co-
2 2 2 2
efficients into the continuous formulation,

y(x) = ag(x yn‘l'hZﬁ] fn+]

= ao(x)yn + h[ﬁo(x)fn +B1(%) furr + B3 (%) f, 13 + B2(x) fur2
+B5 (%) fps + B3(X) furs + Bz (%) fig + Ba(X) fuva + Byisa f,, 9]

If we let w = x,,11 — x for ease of notation, then the continuous coefficients
are as shown in Appendix[A] Notice that unlike the earlier work in [2] in which
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to obtain the discrete scheme for y,, 1, we differentiated the continuous formu-

lation before evaluating it at w = — % Here, to obtain the discrete scheme for

Yn+1, we did not differentiate the continuous scheme at all and that is why we

used the term “derivative—free” in the title of this paper, rather we evaluated

it at w = 0. The derivation of the new block hybrid method is as explained

below.

We evaluated the continuous formulationatw = 0, — %, —h, — %, —2h, — %, —3h, — %,

we obtained respectively the discrete schemes which becomes the block hybrid

method
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h[473977f,, + 6190578, 1 — 14256264f, 3 + 21960504, > — 22333032f, 5]
Ynt1 =Yn+ 2041200
h[15056670f, 5 — 6504408, 7 + 1635759, 4 — 182584f, o]

2 (22
2041200 , (22)
1[20759f, + 287046 f, 11 — 581818f, , 3 + 936468f1+> — 958194f, 5 + 647690 3]

Yni3 =VUnt 89600

h[280206f,,, 7 — 70533f,.4 + 7878, 5]

_ 2.
89600 ’ @3)

h[59143f, + 814932f, 1 — 1601616f, 13 + 2762856 f,12 — 2761488, +g]
Yni2 =Yn + 255150
h[1860780f, 3 — 803952, 17 +202221f, 4 — 22576, +%]
4
255150 ’ @4
1[605495f,, -+ 8353350f, 1 — 16467450f, 13 12896290012 — 27460530f, %}
Yns3 =Ynt 2612736
h[18890250,,+3 — 8182350f, 17 +2060325,,4 —230150f, %}
2.
2612736 (29
h[649f, + 8946 f, 1 — 17608, 13 +30888f,42 — 28584f, +%]
Yni3 =Yn + 2800
1[20990f 5 — 8856, 7 +2223f, 4 — 248f, o]
2.
2800 ’ (26)
h[2162377f, -+ 29837178, 1 — 58823814f, 13 103389804 f, 1, — 96271182f, +%}
Yni] =Yn Tt 9331200
h[73295670f, 3 — 27390258, 17 + 72760594 — B16634f, 9]

2, (27
9331200 @7)
1[29578f, + 40723211 — 800256f,, 5 + 1402056 f,, > — 1294848f, 5|
Yn+a =Ynt 127575
1 (97248043 — 317952f, 17 +123786f,14 — 11776f, +%]

2.
127575 ’ 28)
120727 f + 288198 f,, 1 — 574074f, . 5 +1017684f,, > — 965682f, 5]

Ynsg = Ynt 89600
h[1748170f, 3 — 278478, 17 +141669f,14 + 4986f, +%]
89600 '

+

(2.9)
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From the above block hybrid schemes, we obtained the following vectorized

continuous coefficients that will be used in calculating the order:

X = —

and

&3

NIN

NI

Ky =

NIo

NI
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In the same vein,

- 67711 T - 343921 r 594011 1016691 r 310181
291600 113400 85050 9450 28350
20759 143523 290909 234117 479097
89600 44800 44800 22400 44800
8449 45274 266936 51164 153416
36450 14175 42525 4725 14175
605495 464075 2744575 268175 1525585
2612736 145152 435456 24192 145152
Bo = , B1= , Bz =-— , Ba= , Bs=-—
649 639 2 2201 3861 2 3573
2800 200 350 350 350
2162377 1657621 9803969 957313 5348399
9331200 518400 1555200 86400 518400
29578 6464 266752 51928 143872
127575 2025 42525 4725 14175
2961 144099 287037 254421 482841
L 72800 A L "44800 A L "44800 - L 22400 - L 44800 -
and
- 501889 - 30113 - 181751 r 22823
68040 9450 226800 255150
64769 140103 70533 3939
8960 44800 89600 44800
62026 14888 22469 11288
8505 4725 28350 127575
3148375 151525 228925 115075
435456 48384 290304 1306368
163 - ’ ,BZ - - ’ ,34 — ’ 52 - -
2099 2 1107 2223 2 31
280 350 2800 350
2443189 507227 808451 408317
311040 172800 1036800 4665600
64832 11776 13754 11776
8505 4725 14175 127575
74817 139239 141669 2493
L 8960 A L "44800 - L 89600 - L™ 44800

Next, we state the following lemma with a proof. Lemma 1. Each of the

discrete schemes that constitute the block hybrid method (3)-(10) has order
nine.
Proof. Substituting the above values of a’s, 8’s into the formula for calculating
the order of a Linear Multistep Method and after appropriate algebraic simpli-
fications as shown in [37] and [38], we have Cg = C1 = C, = C3 = C4 = C5 =
C¢ = C7 = Cg = C9 = 0. The non—zero error constants (Cqg) are as tabulated
in Table
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TABLE 1. Error constant of each of the discrete schemes that con-
stitute the block hybrid method.

i Error Constant C19 # 0
Yni1 | 1.809836508548893 x10*
Yy 3 | 1.785387311662946 x10~*

Yni2 | 1.792909807956104x 10~*
Ynys 1.788583195211839 x10~*

Yuss | 1.792689732142857 x10 2
V7 | 1.786382437079368 x 10 *

Ynia | 1.802861062120321 x10~*
1.715632847377232 x10~*

9
y?’l‘i’j

2.1. Zero Stability, Convergence and Region of Absolute Stability of the
New Block Hybrid Method. In this section, we examine the stability prop-
erties of the new block hybrid method and plot its region of absolute stability.
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We start by re-writing the block method in the form :

100000 0 0] Y
0100000 0f |Ynt}
0010000 0| |Vnt2
0001000 0| [Vngs

0000100 O |Ynss

2

Yn+4

- - [Ynts)

+h

000O0O0O0OT1

000O0O0O0OT1

000O0O0O0 1]

000O0O0O
000O0O0O

000O0O0GO

2162377
000000 9331200

605495
000000 2612736

Yn—5

Yn—4a

Yn-3

649
2800
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+hZ

fn—4

fn—l

fn—|—1_
fnJr%
fn—|—2
fn-{-%
fn+3
fnJr%

fn+4

| s
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where
- 343921 594011 101669 310181 501889 30113 181751  _ 22823 A
113400 85050 9450 28350 68040 9450 226800 255150
143523 290909 234117 479097 64769 140103 70533 3939
44300 44300 22400 44300 8960 44300 89600 44300
45274 266936 51164 153416 62026 14888 22469 11288
14175 42525 4725 14175 8505 4725 28350 127575
464075 2744575 268175 1525585 3148375 151525 228925 115075
z 145152 435456 24192 145152 435456 48384 290304 1306368
639 2201 3861 3573 2099 1107 2223 31
200 350 350 350 280 350 2800 350
1657621 9803969 957313 5348399 2443189 507227 808451 408317
518400 1555200 86400 518400 311040 172800 1036800 1665600
6464 266752 51928 143872 64832 11776 13754 11776
2025 10505 1725 14175 8505 1725 14175 127575
144099 287037 254421 482841 74817 139239 141669 2493
L "44800 44300 22400 44300 8960 44800 89600 14800 -

From the above equation and for the purpose of the discussion in this section,
we define the matrices W, X and Y as follows:

1 00 00 0 0 0]
01 0000O0TO
001000O00O0
W=[m oy oag anag momg]= 0 0000 0 g ol
00000100
0000O0O0OT1O0
000 0O0O0O0 1]
M 00 000 0 17
000O0O0O0T 0?1
000O0O0O0TO071
000O0O0O0T 0?1
X_[0000000—a0}_00000001,
000O0O0O0TO071
000O0O0O0T 071
0 00 0O0O0O0 1]
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and r 67711 1
0000000 AL

20759
0000000 27

0000000 2

0000000 266015;79356

0000000 =&

2162377
0000000 &350

29578
0000000 25

0000000 28|
Now, using the matrices W and X as defined above, we study the zero stability
of the block hybrid method as shown below

det(RW — X) = R® — R” =0,

R equals zero (multiplicities 7) and R equals one. The new method is zero
stable because the roots of the characteristic polynomial (i.e., R = 0 has mul-
tiplicities seven and R = 1 as shown above) have respectively modulus zero
which is less than or equal to one and those of modulus one (i.e, R = 1) is
distinct. In addition to this, according to Henrici [39], the new block hybrid
method is consistent because each of the discrete schemes that constitute the
block is of order nine as shown in Lemma 1 which is greater than one. There-
fore, since the new method is zero stable and consistent, it is convergent (see,
for example, [40, 41} 142]).

In plotting the region of absolute stability of the method, we used the stabil-
ity polynomial

M(z) = [Ww — X — Yw — Zwz|, z = Ah, w =¢?, > = -1, § € [0,27],

and y’ = Ay is the usual test equation. Thus,

M(z) = |Ww—-X-—Yw— Zuwz|
~ 7560w® — 94507 )28 4 (—55308w® — 10221w”)z7 + (25450218 — 65628w”)z°
N 1935360
(—858704w® — 296212w7 )z + (2185960w® — 976360w” )z* + (—4139520w® — 2331840w” )23
* 1935360
N (5550720w® — 3857280w”)z2 + (—4730880w® — 3978240w” )z + 1935360w® — 1935360w”
1935360 '

Newton’s method was used to obtain the roots of M(z) = 0 where the region
of absolute stability is defined as

E(w,z) ={ze€C:p(w,z) =1, |w| <1},

which is as shown in Figure
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Imz}

Rea{z)

FIGURE 1. The stability region of the ninth-order block hybrid
method are the red patches on the imaginary axis.

The above analysis now leads to the following algorithm and implementa-
tion.

2.2. Implementation and Algorithm. In this section, we show how Newton's
method is implemented in solving the nonlinear system of eight equations in
eight unknowns of (3)-(10) i.e., F(y) = 0 where the unknowns are y;, for

3 5 7 9
| = +1l,n+=-,n+2,n+=,n-+ + - n+ 4+ = 5.
1 {n N 2,n SN z,n 3,n 2,n 4,n 2}

We make it categorically clear at this juncture that we are only interested in
the unknown vy, but the contribution from the remaining contribute to the
accuracy of the block hybrid method. Newton’s method applied to F(y) = 0
is as follows

G(y"®)ay™ = —F(y"), (210)
where G(y¥) is the Jacobian of F(y). Find the PLU factorization of G(y*)), i.

e.,

PG(y®) = LU, where Pisa permutation matrix, L and U are lower and upper
triangular matrices. With PG(y¥)) = —PF(y), if we let r = —PF(y(¥)), then
we first solve Lv = r and UAy®) = v for Ay(¥). Only one PLU factorization
is needed at each iteration. The algorithm self starts and does not need any
predictor—corrector to predict the starting values. The algorithm is given below
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Algorithm 2.1. Input: Step size, tol, the differential equation and correspond-
ing initial conditions, Jacobian of the new method.
Fork=0,1,2,---,
(1) Evaluate F(y®)) from (3)—(10).
(2) Factorize [L, U, P] = LU(G(y™"))).
(3) Solve Lv(k) = ¢ for vk,
(4) Solve UAy®) = v(K) for Ay(k).
(5) Update yk+1) = y(&) - Ay(k),
(6) Continue until Netwon’s method converges.
Output: vy 1.

Stop the algorithm as soon as ||[Ay®)| < tol and ||F(y®))| < tol, where
tol is a user defined tolerance.

3. RESULTS AND DISCUSSION

In this section, we present the result of seven numerical experiments to ascer-
tain the performance of our method in comparison with those of Akinola et al
[2], [43], [44], [45] and [46]. Results are presented by means of figures and ta-
bles. Throughout this section and where necessary, we computed the cputime
thrice before finding the average.

Example 3.1. The non-linear stiff problem [43]]
uj(x) = =2uy(x) + up(x) + 2sin(x), u1(0) =2,
uh(x) = 998u1(x) — 999us(x) +999(cos(x) —sin(x)), u(0) = 3.
The solution to this problem can be found in Figure 2|and Table 2| The result

of the table shows that the new method outperformed those of Yakubu and
Sibanda [43] which is a very recent study.

15 F —4— wy{x)
1} —%— u,{x) Exact

X +— ()
2r —#— u(x) Exact | |

0 5 10 15 20

FIGURE 2. The solution of Example and the exact on x =
[0,20] with h = 0.1.
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TABLE 2. Max. Error comparison table for Example

h Max Error [43] Max Error [44] Max Error (Our Method)

4x10°1  49x10%™ 8.9x10% 3.0x10 98
2x1071  2.2x107% 59%x10~% 6.4x1011
1x1071  39x10~ 11 45%x10~11 1.1x10°13
51072  6.4x107°13 29x10713 1.5x10" 14

Example 3.2. The Van—der Pol Oscillator
uy(t) = us(t), wr(0) =2,
uy(t) = p(ua(t) — ui(tyuz(t)) —us(t), u2(0) =0 and p=>5.

We compared the results of our method with those of ode15s and it is shown
in Figure 3|

3 : : T LY

—I_||1J —I_|2|1|
— i 1] ocbe 15

— 1) e 15a

3 ; ' - 10 -
0 10 20 30 40 ¢ 10 20 30 40

FIGURE 3. Result of Examplefor h = 0.01.

Example 3.3. We consider the system [43]
vy (t) = —21vy + 190, — 2003
vh(t) = 1901 — 210, + 2003
vh(t) = 4001 — 400, — 4003,
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TABLE 3. Max. Error comparison table for Example

Steps  Max Error [43] Max Error [45] Max Error [46]  Max Error
(Our Method)

2.0x101 3.3x1079 3.0x10 02 7.7%x10792 7.8x10°03

40x100 1.1x107% 35%x10°% 1.2x 10792 2.6x10704

8.0x101  24x1070 2.2x10704 1.9x107%4 1.3x107%

1.6x10%  4.1x10708 5.8x10700 1.5x 109 5.8x10~%

32%x102  6.5x10°10 1.1x10797 3.1x10708 1.6x10~ 1

on the interval [0, 4] with [01(0),v2(0),v3(0)]T = [1,0, —1]" and exact solution

v1(t) = 0.5[exp(—2t) + exp(—40t)(cos(40t) + sin(40t))]
vp(t) = 0.5[exp(—2t) — exp(—40t)(cos(40t) + sin(40¢t))]
v3(t) = exp(—40t)[sin(40t) — cos(40t)].

The results of this example are in Table

The last column of Table (3| shows that our method performed better than
those of [43], [45] and [46].

Example 3.4. The non-linear stiff Kaps problem [47]
{ui(x)] {(10021/11(36) + 100013 (x))

up(x) — up(x) — uz(x)

, with u1(0) =1,u,(0) = 1.

The solution is u71(x) = exp(—2x) and up(x) = exp(—x). Results of numerical
experiments using a constant step size of 1 = 0.1 are shown in Table 4|

Though the new method and the one in [2] are different, Table @ shows that
in the absence of round-off errors, the results are the same. In fact, in this ex-
ample, the condition number of the matrix of the system solved at the root by
the hybrid method in Akinola et al [2], is more than four times (92296 versus
22860) that of the new method which is derivative free. Though one has a
smaller condition number than the other but in fairness, both condition num-
bers are large and that is why in the last section of this paper, we show how
these can be circumvented via preconditioning. Besides, as shown in columns
four and seven the cputime is lesser than that of Akinola et al [2]. Results of

simulation showed that our method performed at par with the exact solution
for both uy (x) and uy(x).
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Example 3.5. The non-linear stiff problem of Gear [48] which has no solution,

uj(x) = —0.013u; — 1000u;u3
uhy(x) = —2500upus
uj(x) = —0.013u; — 1000u1uz — 2500u;u3,

with initial conditions

and h = 0.1.

Example 3.6. The linear stiff IVP [49]
W[ e ] O]
uh(x) —10uy(x) u,(0) 1
uf(x) —100u3(x) u3(0) 1
Lufy(x) ] | —100014(x) [ 144(0) ] 1]

with a fixed step size of h = 0.1.

Results of the numerical experiment is as shown in Figure 3.6/ and Table
A closer look at Table |5 reveals that there is no huge disparity in the cputime
between the new method and those of Akinola et al [2]. But just as in the previ-
ous example, we noticed that the condition number of the system in Akinola et
al [2], is four times that of the present work (217309 against 54214). This might
have accounted for the slight difference between the last few digits for all the
u values for both x = 5 and x = 50. However, aside the better condition num-
ber of the new method, there is not much significant differences in the results.
Figure 3.6/ also reveals that aside between x € [0.1,0.2] for both u3 and u4 the
new method performed favourably with the exact in the absence of round off
errors.

Example 3.7. The Fatunla [50] problem is well known to be stiff

()] [—10u(x) + 100ux(x)]  [ua(0)]  [17
()| | -100u(x) — 10m(x) | |uw(0)] |1
wix)| s (x) w©)| |1
ol (%) OIS
(%) —0.5u5(x) us(0)| |1
) L —otu | lw@] L
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TABLE 4. Absolute errors of our method with [2] on Example
x | u; | Akinola et al | CPU k(G) New CPU x(G)
[2] Time(s) Method | Time(s)
5 |up| 4.84x107% | 7.23x107> | 92309 | 4.84 x 10797 | 6.96 107> | 22863
up | 528 x 107% 5.28 x 10798
50 | up | 3.96 x 10740 | 8.66x107> | 92296 | 3.96 x 104 | 8.56x 107> | 22860
up | 1.50 x 10~ 1.50 x 10=%
TABLE 5. Absolute errors of our method with Akinola et al [2],
on Example
x | u; | Akinola et al CPU x(G) New CPU k(G)
[2] Time(s) Method Time(s)
ur | 4.88x107° [1.05x107% [ 217309 | 4.94x10~° | 1.05x10~* | 54214
5 |uy | 247x1072 247x107%
Uus 0 0
Uy 0 0
up | 1.54x10733 [ 1.06x10~% | 217309 | 1.41x10733 | 1.16 x10~* | 54214
50 | up 0 0
us 0 0
Uy 0 0
From Table[d it is obvious that the explanations given in the previous exam-

ples holds sway except the fact that there is a clear difference in the cputimes
albeit the new method had a slightly higher cputime than that of Akinola et al
[2]. Nevertheless, there is no difference in accuracy.

TABLE 6. Absolute errors of our method with [2] on Example

x | u; | Akinola et al | CPU x(G) New CPU k(G)
[2] Time(s) Method | Time(s)

uq | 2.60 x 10722 [ 1.59x102 [ 19539 | 2.60x 10722 | 1.68x 10> | 4865
5 |up| 8.02x107% 8.02x10~2

us | 8.64 x 10716 8.64x10716

uy | 4.88 x 1071 494x1071°

U 0 1.68x103 | 19539 0 1.73x107° | 4865
50 | up 0 0

Uus 0 0

uy | 1.39x107033 1.41x10~3

3.1. Preconditioning Strategies. As shown in the previous section, we en-
countered ill-conditioning in the last three numerical experiments considered.
In this section, we used an LU-type preconditioner to differentiate between
the performance of the two methods under discussion in this paper. All plots
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were on a semilogy scale and in some selected numerical examples in the last
section, the new method had the smallest norm of residual. Next, we start by
presenting how to implement QMR based algorithm below.

3.1.1. Implementation and Algorithm. We find the LU factorization of the matrix
G as the preconditioner such that M = LU(G) without filling [25], where L
and U are Lower-Upper triangular matrices. We find the LU factorization of G
[16], thatis M = LU(G) = M;M,, where M; = L and M, = U. Since M; and
M, are triangular matrices, M is easy to invert because it is the product of two
triangular matrices. We solve the system

GAy = —F,
by replacing it with the preconditioned system
M;'GM; 'MyAy = — M, 'F.

Hence, we let G = Ml_lGMz_l, Ay = MpAy and F= —Ml_lF and solve for Ay
in
GAy =F,
using the Quasi-Minimum-Residual (QMR) iterative method [17,18,[19]. There-
fore, we solve
MpAy = Ay,
to obtain Ay. This now leads to the following corresponding algorithm.

Algorithm 3.1. Input:Same as Algorithm 2.1]above.
Fork=0,1,2,---,

(1) Form F(y(0).

(2) Find the LU factorization of [M1, M2] = LU(G(y®)).

(3) Solve G(y)Ay®) = F(y®), for Ay*) using QMR, that is

[Ay"), FLAG, RELRES, ITER, RESVEC] = qmr(G(y")), —=F(y®),[ |,[ ], M1, M2);

(4) Apply Newton update yk+1) = y(k)  Ay(K),
(5) Continue until convergence.

Output: vy 1.

In each of the following Figures[4} [5 [fand [7]for both x = 5 as well as x = 50,
we compared the residual norm versus number of iterations upon an applica-
tion of the preconditioned QMR algorithm on the four numerical examples of
the previous section. With a default tolerance of 10~ the results of numerical
examples showed that QMR converged after two iterations with the residual
norm in the present work less than that of Akinola et al [2], which was our
aim. Hence, the new method gives better results asides being well conditioned
without preconditioning than an earlier work in the literature. Therefore, we
recommend the new method for the numerical integration of differential equa-
tions.
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FIGURE 4. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.4
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Preconditioned QMR

01
10 T —
o= Akinola et al.
10° o= now Method
T
=2
k=]
o0
=
°
1S
o
-
10_-._3 i 1 1 1
1 1.2 1.4 1.6 1.8 2
Mumber of terations
(A)x=5
Preconditioned QMR
01
10 T —
= Akinola et al. |
10 8= Now Mathod &
10 1
10 1
10 1
10° 1
10 E
T 10 1
- 1
'g 107 F 1
5100F 3
£ - ]
‘23 10 'jl
iﬂ- 12 -!
10" 1
10™E 1
10-75 = -5
10k 1
10" F
10"%F :
IO-}Q L L I L 1

12 1.4 1.6 1.8 2
Mumber of terations

(B) x =50

FIGURE 5. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.5
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FIGURE 6. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example 3.6]
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Preconditioned QMR

Preconditioned QMR

1.4 1.6 1.4 1.6
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FIGURE 7. Residual norm versus number of iterations of the
block hybrid method of Akinola et al [2], with those in the
present work for x = 5 and x = 50 on Example[3.7}

Table [7] shows the gains made at reducing the condition numbers in both
methods using an LU-type preconditioned QMR.

TABLE 7. Condition number of the preconditioned system.

Example | Size of G | nnz(G) | x(G)
34 16x16 230 | 1.000
3.5 24x24 402 1.000
3.6 32x32 232 1.000
3.7 48 %48 462 1.000

4. CONCLUSION

We developed a new derivative—free, zero stable, convergent block hybrid
linear multistep method for the numerical approximation of stiff and non—
stiff IVPs. It was observed that the new method gave favourable results that
the works of [43], [45] and [46] in terms of maximum absolute error. We also
showed computationally that the new method when compared to another ex-
isting ninth—order block hybrid method gives the same result with better con-
dition numbers. In addition, applying an LU-type preconditioner using a
Quasi-Minimal Residual iterative method showed that the new method gives
a smaller residual norm than the existing method though both converged to
the default tolerance with the same number of iterations.
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APPENDIX A. CONTINUOUS COEFFICIENTS

In this Appendix we present the continuous coefficients. The continuous
coefficients are the elements of the first row of the inverse of D.

ap(w) =1,
160w® + 2520hw® + 16560h%w” + 58800h3w® + 121842h*w®
Po(w) = - 204120078
147735h°w* + 98010h°w3 + 28350h” w? — 473977h°
N 204120048 '
320w” + 4680hwd + 27360h%w” + 78960h3w® + 102564h*w?
Pr(w) = 11340078

B 91351 w* + 197940h°w3 + 237330h” w? + 113400h8w — 3439214°
11340048 ’
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1120w’ + 15750hw® 4 86760h*w” + 2257501 w® + 223524h*w°

By (w) = 8505018
171675h°w* + 578340h°w? + 396900h” w? — 594011Hh°
B 8505048 ’
_ 560w” + 7560hw® + 39240h*w” + 92400h3w® + 68607h*w>
Pa(w) = 1890078
101745h°w* + 210735h%w3 + 9922507 w? — 203338h°
B 1890048 ’
1120w’ + 14490hw® + 70920h>w” + 152250h3w + 84924h*w?
Bs(w) = — 2835018
191205h°w* + 310380h°w> 4 132300h” w?* — 310181h°
N 2835048 ’
2240w’ + 27720hw’ 4 128160h%w’ + 253680k w® + 109116 w°
Pa(w) = 6804073
336735h°w* + 487620h°w? + 198450h” w? — 501889K°
B 6804048 ’
By (w) = — 160w + 1890hw® + 8280h%w” + 15330h3w® + 5292h*w?
3 945048
21105K°w* + 28620h°w> + 11340h” w? — 30113h°
B 945018 ’
1120w 4 12600hw?® + 52560h>w” + 92400h3w® + 26334h*w®
Pa(w) = 22680018
130725h%w* + 169890h°w? + 66150h” w? — 181751K°
B 22680048 ’
Bo(w) = — 160w + 1710hw® + 6840h%w’” + 11550h3w® + 2772h*w®
2 255150418
166951°w* + 21060h°w?3 + 8100h” w? — 22823K°
B 25515048 '
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