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POLICE PATROL OPTIMIZATION: A PROFICIENCY-AWARE
MODEL FOR RAPID RESPONSE TO INCIDENTS

KABIRU M. KOKO*, PETER AYUBA, PETER ANTHONY, AND SANI DARI

ABSTRACT. This study introduces the Crime Neutralization Model (CNM), an
optimization based framework designed to improve the strategic deployment
of police patrol teams. The CNM addresses critical limitations in traditional
rapid response systems by incorporating three, often neglected operational fac-
tors: (1) variation in patrol team proficiencies, (2) crime-type-specific resource
demands and (3) scenario-dependent severity levels. A discrete mathemat-
ical programming approach is employed to minimize the expected weighted
response distance, while ensuring that all incidents are covered by suitably
proficient teams within defined response radii. The model is validated using
synthetic urban crime data, where results demonstrate that 10 patrol teams op-
erating within a 1.5 km response radius achieve a 45.29% improvement in travel
distance efficiency. Sensitivity analysis yields two key insights: first, optimal
deployment strategies remain consistent across increasing response distances,
indicating robustness; second, performance does not scale linearly with team
count, most notably, a deployment of 12 teams unexpectedly results in re-
duced efficiency. With computation times ranging from 4 to 12 seconds, the
CNM offers a practical and adaptive tool for police departments to enhance
resource allocation in alignment with both spatial constraints and operational
capabilities.

1. INTRODUCTION

Effective policing is fundamental to ensuring public safety and responding
promptly to emergencies [I]. To optimize emergency response capabilities, police
departments have turned to data-driven patrol deployment models that prioritise
minimizing response times [2]. These models focus on strategic resource alloca-
tion to enable swift intervention during critical incidents.
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Optimization techniques have emerged as valuable tools for enhancing rapid
response capabilities. By employing models such as the Facility Location Prob-
lems (FLP) and the Vehicle Routing Problem (VRP), researchers have developed
methods to optimize resource allocation and minimize response times [3]. These
adapted law enforcement models aim to strategically position patrol teams for
maximum responsiveness [3].

However, a critical review of the literature reveals that current optimization
models often fail to fully capture the complex, multi-faceted reality of police re-
sponse. Specifically, they frequently rely on three simplifying assumptions that
limit their practical effectiveness: (1) treating patrol teams as homogeneous units
with uniform capabilities, (2) aggregating crime types and severity levels into a
single, generic demand metric, and (3) focusing solely on spatial coverage without
considering the tactical suitability of a team to handle a specific incident. These
oversights neglect the stochastic nature of emergency response needs, the specific
resource requirements for each crime-severity combination, and the varying pro-
ficiency of patrol teams. Consequently, existing models may yield deployment
plans that are spatially efficient but operationally infeasible, potentially increas-
ing the risk of patrol teams being overpowered by criminals.

This research, therefore, develops the Crime Neutralization Model (CNM), a
novel optimization framework that advances the state-of-the-art by integrating
three critical, yet often overlooked operational factors: (1) team heterogeneity,
by explicitly modelling the unique proficiency of each patrol team across diverse
crime types and severity levels; (2) incident-resource specificity, by incorporating
scenario-dependent resource requirements that define the minimum proficiency
needed to neutralize an incident; and (3) stochastic demand, by accounting for
the probability of each crime-severity combination occurring at a given location.

By moving beyond traditional coverage models to this integrated proficiency-
aware framework, the CNM ensures that response plans are not just fast, but
also effective and tactically efficient. This directly addresses a key gap between
theoretical resource allocation and operational reality in reactive policing.

The remainder of this paper is structured as follows. Section 2 reviews the
relevant literature. Section 3 presents the model and its underlying assumptions.
Section 4 details the experimental results, and Section 5 discusses their impli-
cations. Section 6 outlines the study’s limitations and suggests directions for
future research. Finally, Section 7 concludes the study, and Section 8 provides
acknowledgements.

2. REVIEW OF RELATED STUDIES

Police location-allocation planning plays a vital role in ensuring rapid response
to incidents by strategically deploying patrol teams [4]. While crime prevention
remains a central goal, an equally urgent priority is the swift neutralization of
threats once a crime occurs or is about to occur. For a police response team to
respond effectively to incidents, their positioning while not attending to any in-
cident can be optimized [5]. Therefore, Mathematicians, specifically Operational
Researchers became involved and began applying Facility Location-Allocation
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models such as the p-Median model, Set Covering Location model and the Max-
imal Covering Location model to develop police patrol deployment models that
support rapid incident response.

Early work by Su et al. [6] introduced a two-level police patrol optimization
model that tackled three critical needs: emergency response, unpredictable pa-
trol routes and priority-based area coverage. Their model combined sector design
with hierarchical response time requirements, using a branch-and-bound approach
to reduce patrol sectors by 25 percent while maintaining response efficiency. De-
spite its strengths, the model assumed homogeneous patrol capabilities and made
simplified assumptions about road and traffic conditions, limiting its real-world
applicability.

Building on such foundational work, Chow et al. [7] applied the p-Median
model to specifically minimize response times, marking a shift toward incident-
driven deployment. However, their design assigned only one patrol team per
area, disregarding differences in team efficiency or incident severity. Meanwhile,
Guedes et al. [§] advanced the field with a dispatch optimization system that used
multi-objective evolutionary algorithms (MOEA) alongside real crime data from
a Brazilian city. Their model effectively reduced average response times by 20
percent and achieved near-perfect priority call attendance. Nevertheless, it failed
to account for patrol team heterogeneity or crime-specific severity distinctions,
factors that are increasingly crucial in modern policing.

A significant parallel evolution in patrol optimization has been the rise of pre-
dictive policing models, which seek to anticipate criminal activity rather than
merely react to it. Ground-breaking work by Mohler et al. [9] introduced crime
forecasting through self-exciting point process models, treating crime like an epi-
demic that spreads from prior incidents. This was operationalized in the work
of Isafiade et al. [10], which used historical crime data to generate daily patrol
recommendations. However, predictive models often operated in a silo, sepa-
rate from resource allocation algorithms. They generated risk maps but did not
directly optimize how or where to deploy patrol units in response to those pre-
dictions, creating a gap between forecasting and execution. Furthermore, it was
earlier noted that these models have faced substantial ethical scrutiny regarding
the potential perpetuation of biased enforcement patterns embedded in historical
data [11].

A more data-driven approach came from the work of Mukhopadhyay et al. [12],
who proposed a bi-level stochastic optimization framework combining real-time
crime forecasting with adaptive routing. Using survival analysis-based crime
prediction models and iterative decomposition, they achieved faster and more
accurate results than existing methods. Yet, like earlier models, theirs assumed
uniform patrol team proficiency and simplified incident classification, limiting its
adaptability to varied urban crime scenarios.

Similarly, Chase et al. [I3] proposed a spatio-temporal Mixed Integer Linear
Programming model that ensured response time is minimized, by incorporating
real police data and machine learning for travel time estimation. Their model
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achieved resource savings while maintaining service levels, but again, the assump-
tion of homogeneous patrol teams and fixed urgency levels limited its flexibility
in responding to various incident types.

Moving beyond static deployment, a growing body of research focuses on dy-
namic patrol models that adapt to changing conditions in real or near-real time.
These models often draw from advanced artificial intelligence, treating patrol as
a sequential decision-making problem. For instance, Chen et al. [I] have em-
ployed sophisticated Multi-Agent Reinforcement Learning (MARL) frameworks
to generate adaptive patrol strategies that continuously learn and react to crim-
inal activity. Similarly, other approaches have utilized game theory to model the
strategic interplay between police and adversaries, optimizing randomized patrol
routes to prevent predictable patterns [14] and [15]. While these methods offer
powerful adaptability, their ”"black-box” nature can make them difficult to in-
terpret and implement within the structured command protocols of real police
departments.

Most recently, Dewinter et al. [2] implemented a p-Median-based deployment
strategy for police vehicles in Antwerp. While focused on both preventive and
reactive policing, the model limited each zone to one vehicle, disregarding differ-
ences in demand across zones an oversight that could hamper response effective-
ness in high-crime areas. Price & Curtin [16] employed the Maximal Covering
Location Problem Model (MCLPM) combined with integer programming to min-
imize police response time. While the model effectively addresses the goal of rapid
deployment, it assumes that each hotspot has only one type of demand and fails
to consider the varying proficiencies of patrol teams in handling different types
of crimes.

Despite the substantial progress made in police location-allocation modelling
for rapid incident response, existing models often rely on simplifying assumptions
that limit their practical effectiveness. A recurring gap across the reviewed stud-
ies is the assumption of homogeneous patrol teams and the failure to differentiate
between varying levels of incident severity. These oversights weaken the adapt-
ability and operational realism of such models in complex urban settings. Build-
ing on this foundation, the model proposed in this study seeks to address these
limitations by explicitly incorporating the incident-severity combinations and the
proficiency of patrol teams in handling each specific combination. By aligning
team capabilities with the nature and urgency of emerging incidents, the model
aims to enhance response precision, reduce operational delay and strengthen the
overall effectiveness of police deployment strategies. This contribution advances
the field toward more responsive, context-aware and efficient police patrol sys-
tems.

3. MODEL FORMULATION

This section presents the Crime Neutralization Model (CNM), a stochastic
optimization framework designed to efficiently allocate limited police patrol re-
sources across urban areas. The model ensures rapid response to incidents while
adhering to critical operational capacity constraints.
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The CNM introduces key enhancements to improve the operational effective-
ness of police patrol teams. It accounts for patrol team proficiency constraints
and their varying abilities to handle different types of crimes under different sever-
ity levels. By jointly considering the type and severity of incidents, along with
the proficiency of patrol teams in managing these under various scenarios, the
CNM offers a more structured and adaptive framework for crime neutralization.
The remainder of this section is organized as follows. Section 3.1 outlines the
fundamental assumptions of the model. Section 3.2 introduces the mathematical
elements, including sets, parameters, and decision variables. Finally, Section 3.3
presents a conceptual benchmarking against existing rapid response deployment
models.

3.1. Model Assumptions. The CNM is built upon a set of core assumptions
that reflect the operational and logistical realities of urban police patrol deploy-
ments. These assumptions are categorized into foundational and enhanced real-
ism assumptions.

Foundational Assumptions:

i. Patrol deployment is discrete, with a fixed number of patrol teams avail-
able at the time of deployment.

ii. Each patrol team can only respond to incidents within a defined maximum
response distance from its assigned patrol location.

iii. Each potential incident (a unique crime-severity combination at a loca-
tion) is attended to by a single patrol team.

iv. Each patrol location can accommodate at most one patrol team.

v. The number of available patrol teams is less than the number of patrol
locations.

vi. The number of patrol locations is fewer than the number of incident lo-
cations (hotspots).

Assumptions for Enhanced Realism:

i. Patrol teams are heterogeneous, possessing varying levels of proficiency in

handling different crime types under various severity levels.

ii. Each incident requires a specific level of police resources, determined by
its crime type and severity level.

iii. The probability of a specific crime-severity combination occurring at a
location is known.

iv. Deployment decisions are scenario-dependent, adapting to both the prob-
ability of crime occurrence and the proficiency of available patrol teams.

These assumptions collectively ensure the model is both computationally tractable

and aligned with the strategic requirements of reactive policing, providing a re-
sponsive and efficient framework for patrol deployment.

3.2. Mathematical Elements of the Model. To facilitate a clear understand-
ing of the model, we define the following sets, parameters and decision variables:
1. Sets:
i. Set of demand locations (incident locations or hotspots), I = {1,2,...,n},
where n is the number of potential incident locations.
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Set of patrol locations, J = {1,2,...,m}, where m is the number of
patrol locations.
Set of crime categories, C' = {cy,ca, ..., ¢}, where k is the number

of crime categories (e.g., violent crime, property crime, kidnapping,
terrorism, etc.).

Set of possible scenarios (severity levels), S = {s1, s2,..., Sy}, where
u is the number of scenarios (e.g., very severe, severe, minor).

Set of patrol teams, T = {1,2,3, ...... ,v}, where v is the number of
patrol teams.

2. Parameters:

1.

ii.

1i.

iv.

V1.

vil.

Total Number of patrol teams to be deployed, K, which is the number
of patrol teams available at the time of deployment.
The shortest distance d; ; between patrol location j and incident lo-
cation 7, the Fuclidean distance between their geometric coordinates.
That is, if the coordinates of hotspot i are (z;,y;) and the coordinates
of patrol location j is (zj,y;), then, d; ; is defined as

dij = \/(Z] —2)%+ (y; — )%

The maximum response distance, r, which is the maximum distance
a patrol team can travel from its patrol location.
Response parameter, J; ;, defined by:

1, if dz j S T,
Aij = o
0, otherwise.

. Level of police resources required at incident location ¢ for crime c

under scenario s: Ly > 0.
Probability of crime category ¢ under scenario s occurring at incident
location 7, Q9°, where

YN Q=1 viel

ceC seS
Proficiency of patrol team ¢ for crime ¢ under scenario s: P;** > 0.

3. Decision Variables:

i

11.

[
Yij =

Binary decision variable x;, defined by:

1, if patrol location j is assigned a patrol team,
x; =
! 0, otherwise.

Binary decision variable y;’7, defined by:

1, if incident at location 7 is to be responded to by a
patrol team at location j for crime category c
under scenario s,

0, otherwise.
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ili. Binary decision variable z;; defined by:

_J 1, if patrol team ¢ is assigned to patrol location j,
P 0, otherwise.

Using the defined mathematical elements, we now present the complete CNM.
Formulated based on the outlined assumptions and operational requirements, the
model consists of an objective function that minimizes the expected weighted
response distance and a set of constraints that ensure solution feasibility. The
complete model is presented as follows:

Minimize: Z = Z Z Z Z Ly Q77 - dij - vy (1)

i€l jeJ ceC seS

Subject to: ij <K, (2)
JjeJ

Y zu=ux;, Vi€l (3)

teT
Y <1, Viel (4)

tel
v} <xidiy, VielVjeJVeeO\Vses, (5)
L{oyis < Nig Y Pz, VieljeJceeCseS, (6)

tel
Y yis=1, VielceCseS, (7)
Jj€J

z; €{0,1}, VjeJ (8)
zi, €{0,1}, VjeJteT, 9)
y.; €{0,1}, Viel, jeJ ceC, s€s. (10)

In the above model, as explained earlier, the objective function (1) minimizes
the expected weighted response distance from patrol locations to incident loca-
tions. Constraint (2) is the resource constraint, which ensures that the number
of deployed patrol teams does not exceed the available number K at the time
of deployment. Constraint set (3) governs patrol team assignment. It ensures
that a patrol team can only be deployed to a location that has been activated.
Constraint set (4) enforces unique team assignment, allowing at most one team
to be deployed to an activated patrol location. Constraint set (5) ensures re-
sponse feasibility. It guarantees that an incident of category ¢ and severity s at
location 7 can be responded to from location j only if a patrol team is deployed
at j and ¢ lies within the response radius of j determined by JA; ;. Constraint set
(6) enforces proficiency requirements. It ensures that an incident of type ¢ and
severity s at location ¢ can be responded to by a team deployed at j only if ¢
is within the response distance of j (as determined by J; ;) and that the team ¢
has the required proficiency to neutralize the incident. Constraint set (7) ensures
a unique incident-response assignment. It guarantees that each incident of any
crime-severity combination is responded to from only one patrol location. That
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is, only one team can respond to each crime-severity combination at a time. This
constraint prevents resource duplication and ensures that all incidents are at-
tended to efficiently. Constraint set (8) is a binary constraint indicating whether
a patrol location is activated or not. Constraint set (9) is also a binary con-
straint indicating whether patrol team ¢ is assigned to location j or not. Finally,
constraint set (10) is also a binary constraint indicating whether an incident of
category ¢ and severity s at location 7 is to be responded to from patrol location
J-

Having presented the CNM to address critical complexities like resource con-
straints, heterogeneous team proficiencies and incident-severity combinations, we
first situate our model within the existing literature. Before proceeding to em-
pirical validation, it is essential to conceptually benchmark the CNM against
established rapid response patrol models. This comparison highlights the novel
contributions of our framework and provides a theoretical foundation for expect-
ing superior performance. Following this conceptual analysis, we evaluated the
model’s practical effectiveness through rigorous empirical testing and sensitivity
analysis.

3.3. Conceptual Benchmarking with Existing Rapid Response Patrol
Models. To clarify the distinct advantages of the proposed CNM formulation
over approaches commonly found in the literature, Table 1 provides a side-by-
side comparison of key capabilities. While no numerical benchmarking is con-
ducted due to structural and dimensional differences in the model’s scope, this
conceptual mapping highlights the additional operational realism embedded in
our formulation.

Table 1: Comparison of key features between existing
models and the proposed CNM formulation

Feature/Capability| Existing Models | Proposed CNM
in Literature
Primary Objective Minimize response | Minimize  response
distance distance while also
integrating scenario-
based  constraints,
proficiency  match-
ing and physical

feasibility
Incident-Patrol Lo- | Binary coverage Distance-based cov-
cation Coverage erage enforced via a
Relation maximum response

distance and
Proficiency-graded
feasibility checks via
constraint (6)
Continued on next page
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Feature/Capability| Existing Models | Proposed CNM
in Literature
Crime Scenario Han- | Single-type or aggre- | Multiple crime cate-

dling gated crime demand | gories with scenario-
specific probabilities

Team Proficiency Often ignored or uni- | Explicit proficiency
form parameter (PS7)

defined per team—
crime type-scenario
combination

Resource Needs Aggregate or fixed Scenario-specific re-
source requirements
linked to team de-

ployment
Deployment Con- | Limited to team— | Includes mutual
straints location assignment | exclusivity, capacity
and  scenario-aware

feasibility
Output Detail Basic deployment | Deployment plan
plan plus coverage valida-
tion, feasibility flags
and scenario-by-
scenario performance
Scalability Moderate (fewer sets | Higher  complexity
and parameters) with additional sets,

enabling more realis-
tic decision-making

Applicability Generalized coverage | Tailored to  law
problems enforcement  patrol
planning under
complex operational
realities
4. RESULTS

This section presents the empirical findings from testing the Crime Neutral-
ization Model (CNM) on a synthetic urban setting. The results demonstrate
the model’s performance in optimizing patrol deployment, its computational ef-
ficiency and its behaviour under varying operational parameters.

4.1. Experimental Set-up. To evaluate the CNM, a numerical experiment was
conducted using a synthetically generated dataset. Coordinate positions were
randomly assigned to 25 red dots, representing incident locations (hotspots) and
15 blue squares representing patrol locations, within a 70 km? urban area, de-
signed as a square grid measuring approximately 8.4km per side. The spatial
configuration of these points is shown in Figure 1. Three crime types (Theft,
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Assault, Kidnapping) and three severity levels (Minor, Severe, Very Severe) were
used. Since real-world data on police resource requirements and team proficiencies
were unavailable, the values for the resource requirement parameter L;® and the
proficiency parameter P,”* were generated synthetically to illustrate the models
mechanics and ensure a feasible solution space.
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FiGure 1. Spatial Distribution of Hotspots and Patrol Locations
Within a 70 km?.

The model was implemented in Python using PuLP library, and solved us-
ing the CBC (Coin-or Branch and Cut) solver, an exact optimization approach
for integer programming problems. The baseline scenario deployed 10 heteroge-
neous patrol teams within a maximum response distance (r) of 1.5 km. The key
performance outcomes are summarized in Table 2.

The model achieved full coverage of all 225 crime-scenario combinations. The
optimal deployment plan, which strategically assigns teams to locations based
on both spatial proximity and proficiency matching is detailed in table 3 and
visualized in figure 2.

Table 3: Optimal deployment plan of the CNM.

Team | Assigned Location | Hotspots handled | Crime-severity — han-
dled

T Lqg Hig, Hig All crimes-severity
combinations

Continued on next page
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Team

Assigned Location

Hot Spots handled

Crime-severity  han-
dled

Ty

Lis

H22

Theft and Assault (all
severity levels); Kid-
napping (Severe and
Very Severe)

H207 H21

All crimes-severity
combinations

H,-H;

All crimes-severity
combinations

Hig—Hir

H16Z Theft (Very
Severe), Assault
and Kidnapping
(all  severity com-
binations), Hyr:
Kidnapping/Minor

Hi3-His

All crimes-severity
combinations

H67H 10

All crimes-severity
combinations

H167H17

Theft (Minor/Severe
at Hiyg); All crimes-
severity combinations
at Hy; (except Kid-
napping/Minor)

H227H25

Kidnapping  (Minor
at Hap); All crimes-
severity combinations
at H23*H25

T1o

Le

H117 H12

All crimes-severity
combinations
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4.2. Sensitivity Analysis. A sensitivity analysis was conducted to evaluate the
model’s performance under varying parameters. Table 4 presents the results for
different numbers of available teams and response distances.
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TABLE 2. Summary of CNM Baseline Results (10 teams, » = 1.5 km).

Component Value
Number of Teams Available 10
Acceptable response distance (km) 1.5
Incidents Covered all (225)
Objective Function Value (km) 292.2601
Total Travel Distance (km) 90.09
Maximum Possible Travel Distance (km) 198.92
Travel Distance Percentage 45.29%
Number of Teams Used 10
Computation Time (seconds) 8.29
Memory Usage (Peak, MB) 29.99
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F1GURE 2. Optimal Deployment of 10 Patrol Teams With 1.5km
Response Distance.

Table 4: CNM Performance Metrics under Parameter

Variation
No. | Response Total Total Objective| NO. | Time
of distance | travel dis- | Travel | function | of (sec)
teams | (km) tance/Total | distance | value Teams
possible % (km) used
travel dis-
tance (km)

Continued on next page
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No. Response Total Total Objective| NO. | Time
of distance | travel dis- | travel function | of (sec)
teams | (km) tance/Total | distance | value Teams

possible % (km) used

travel dis-

tance (km)
10 1.5 90.09/198.92 | 45.29 292.2601 | 10 8.29
10 2.0 90.09/319.88 | 28.17 292.2601 | 10 8.01
10 2.5 90.09/403.51 | 22.33 292.2601 | 10 9.87
10 3.0 90.09/535.63 | 16.82 292.2601 | 10 4.68
12 1.5 100.75/198.92 | 50.65 315.6306 | 12 11.52
12 2.0 100.75/319.88 | 31.50 315.6306 | 12 10.62
12 2.5 100.75/403.51 | 24.97 315.6306 | 12 8.68
12 3.0 100.75/535.63 | 18.81 315.6306 | 12 9.26
14 1.5 87.66/198.92 | 44.07 278.8098 | 14 8.47
14 2.0 87.66/319.88 | 27.40 278.8098 | 14 9.77
14 2.5 87.66/403.51 | 21.72 278.8098 | 14 10.87
14 3.0 87.66/535.63 | 16.36 278.8098 | 14 10.26
15 1.5 84.72/198.92 | 42.59 270.6370 | 14 8.19
15 2.0 84.72/319.88 | 26.48 270.6370 | 14 8.63
15 2.5 84.72/403.51 | 20.99 270.6370 | 14 9.55
15 3.0 84.72/535.63 | 15.82 270.6370 | 14 12.13

Key findings from the sensitivity analysis are as follows:

1.

11.

1il.

1v.

For a fixed number of teams, the objective function value and total travel
distance remained constant across all tested response distances (1.5 km
to 3.0 km).

The travel distance percentage decreased as the response distance in-
creased for all team configurations.

A non-monotonic relationship was observed when varying the number of
teams: performance worsened with 12 teams compared to 10 teams, before
improving with 14 and 15 available teams.

Increasing the number of teams does not necessarily require the model to
deploy all available resources. For example, when 14 teams were available,
the model deployed all 14. However, when 15 teams were available, the
model still deployed only 14, yet the objective function improved due to
the increased flexibility in selecting the optimal subset. This outcome,
permitted by constraint (2), further demonstrates the correctness of the
formulation.

. Computation times remained low, between 5 and 12 seconds, for all sce-

narios.

These trends are further illustrated in the following figures, which visualize the
relationship between response distance and key performance metrics for different
team counts.
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5. DIsSCcuUSSION

7

The results presented in Section 4 validate the CNM’s capability to generate
efficient and proficiency-aware patrol deployments. This section interprets these
findings and discusses their implications.
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5.1. Interpretation of Key Findings. The model successfully generated a de-
ployment plan for 10 teams that achieved full coverage of all 225 crime-severity
combinations while minimizing the total expected weighted response distance.
The spatial allocation of teams (Figure 2) demonstrates the model’s ability to
simultaneously optimize deployments for both geographic proximity and profi-
ciency matching, a significant advancement over traditional location-allocation
models. The sensitivity analysis yielded the following critical insights:

i. Robustness to Response Distance: The invariance of the objective
value and total travel distance to changes in response radius (Figures 3
and 5) indicates that the model identifies a fundamentally efficient spatial
configuration. The expansion of the response radius simply increases the
solution space without offering a more optimal configuration than the
one already found, demonstrating the solution’s robustness. Figure 4
shows the corresponding decrease in travel distance percentage, which
is an expected mathematical consequence of a fixed numerator (actual
travel distance) and an increasing denominator (maximum possible travel
distance).

ii. The 12-Team Anomaly: The performance degradation observed with
12 teams (Table 4, Figures 3 and 5), where both the objective function
and travel distance worsened compared to the 10-team configuration, is
a notable finding. This anomaly suggests the existence of a suboptimal
equilibrium. The addition of two teams disrupts the efficient spatial-
proficiency clusters of the 10-team solution but is insufficient to form a
superior configuration. This highlights a critical resource threshold and
underscores that in a complex and constrained system, simply adding
more resources does not necessarily improve performance and may even
reduce it if deployment is not optimized as a whole.

iii. Computational Tractability: Figure 6 shows that solution times re-
mained consistently low (under 12 seconds) across all scenarios. This com-
putational efficiency makes the CNM a viable tool for strategic planning,
where decision-makers can rapidly evaluate multiple ”what-if” deployment
scenarios and resource allocations without delays.

Successful implementation of the model requires addressing several practical
challenges through a phased approach. First, the trade-off between response
radius and coverage must be carefully calibrated (with 1.5 km recommended) to
balance response time and operational effectiveness. Second, collaboration with
police agencies will be essential to obtain empirical proficiency data for model
calibration. Finally, pilot testing should be conducted in medium-sized hotspots
(25-100 hotspots) to refine parameters before scaling to larger metropolitan areas.
Such pilots should also include officer training on how to interpret proficiency-
aligned deployment strategies.

6. LIMITATIONS AND FUTURE WORK

Although the CNM offers a rigorous framework for optimizing patrol deploy-
ment, its design is constrained by its static formulation. The model relies on a



LAGIMA-2025/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 79

predefined set of scenarios and fixed input parameters, such as incident probabil-
ities (Q;”), team proficiencies (P,"*) and resource requirements (L;”), which are
assumed to be known in advance. This limits its ability to adapt to the dynamic
and unpredictable nature of crime in real-world settings. For example, the occur-
rence of a major incident could rapidly shift crime patterns and resource needs,
leaving a pre-computed deployment plan suboptimal. In addition, the current
structure does not integrate real-time data feeds, such as the operational status
of officers already engaged in responses or prevailing traffic conditions, both of
which are crucial for effective dispatch and rapid incident response.

A key avenue for future research lies in extending the CNM into a dynamic,
real-time decision support system. This could be realized through a two-layer
architecture: a predictive layer, which integrates crime forecasting models to con-
tinuously update incident probabilities (Q;”), and a reactive layer, which embeds
the CNM within a rolling-horizon framework. By re-optimizing at regular inter-
vals or in response to major events, the system would adapt to evolving conditions
while utilizing previous solutions to preserve computational efficiency. Such an
integrated system would connect long-term strategic planning with day-to-day
operational decisions, using the CNMs proficiency-aware optimization to enable
adaptive responses in dynamic urban contexts. Future research should also in-
corporate validation with real-world data to assess the models effectiveness under
operational conditions.

7. CONCLUSION

This research has developed and validated the Crime Neutralization Model
(CNM), an advanced optimization framework that significantly enhances police
patrol deployment strategies for rapid incident response. The model’s key con-
tribution lies in its simultaneous consideration of three critical real-world factors:
(1) varying patrol team proficiencies, (2) crime-type-specific resource needs and
(3) scenario-dependent severity levels, elements frequently oversimplified in ex-
isting literature.

Our computational experiments demonstrate that the CNM achieves several
operational advantages: Deployment plans remain optimal across expanding re-
sponse distances, indicating the model identifies fundamentally efficient spatial
configurations; the framework naturally limits team deployment to necessary loca-
tions, with 14 of 15 available teams being optimally utilized in maximum-resource
scenarios; Consistent computation times under 12 seconds make the model prac-
tical for real-time decision support.

The sensitivity analysis revealed an important threshold effect. While 10 and
14-15 team configurations show expected performance improvements, the 12-team
case exhibits paradoxical efficiency drops. This suggests the existence of critical
resource thresholds in urban patrol deployment that warrant further investigation.
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GLOSSARY OF SYMBOLS

For clarity and ease of reference, all mathematical symbols, parameters, and
decision variables used in this study are summarized in the glossary below. This
table ensures consistency in notation and facilitates a clear understanding of the
CNM formulation and its associated components.

TABLE 5. Glossary of Symbols.

Symbol | Meaning Units

K Total number of patrol teams available for deploy- | -
ment

d; ; Shortest (Euclidean) distance between patrol loca- | km
tion 7 and hotspot ¢

r Maximum response distance km

i Covering parameter: 1if d; ; < r, else 0 -

L? Level of police resources required at incident loca- —
tion ¢ for crime category ¢ under scenario s.

Q" Probability of crime category ¢ under scenario s at | —
location ¢

Po® Proficiency of patrol team t in handling crime ¢| -
under scenario s.

x; Binary: 1 if location j is assigned a patrol team; 0 -
otherwise

Yi; Binary: 1 if incident at location 7 is to responded | —
to from location j for crime ¢ under scenario s; 0
otherwise

Zjt Binary: 1 if team t is assigned to location j; 0| -
otherwise
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