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WORK PERFORMED BY CLOSED AND CLOPEN
M-TOPOLOGICAL FULL TRANSFORMATION SEMIGROUP

SPACES MCTn AND Clp(MCTn)

MOSES OBINNA FRANCIS∗ AND ADENIKE OLUSOLA ADENIJI

Abstract. Let α and β be two elements of an m-topological transforma-
tion semigroup space. In this paper, we introduce and derive explicit formu-
las for the work performed by elements in the full transformation semigroup
MTn

, the closed m-topological semigroup MCTn
, and its clopen counterpart

Clp(MCTn), where the displacement of a point x under a transformation α
is given by d(x, αx) = |x − αx|. We further establish explicit formulas for
the average work and the power within these semigroup spaces. To ensure
that the system stabilizes to integer values, we incorporate the floor function
bxc = {n | n ∈ Z+, n ≤ x < n+1}. Numerical evaluations confirm the validity
of the derived formulas and reveal consistent growth patterns, thereby high-
lighting new combinatorial properties of m-topological transformation semi-
group spaces.

1. Introduction

Let Xn = {1, 2, 3, . . . , n}. A transformation α : Domα ⊆ Xn → Imα ⊂ Xn

is said to be full if its domain satisfies Domα = Xn; otherwise, it is classified as
strictly partial (see Umar [6]). The study of work performed by transformation
semigroups was recently initiated by East and McNamara [2], inspired by a pre-
sentation delivered by Lavers at a semigroup special interest meeting in Sydney
in 2004. Kehinde et al. [4] introduced the notion of power in transformation
semigroups and provided graphical illustrations of their numerical results. In this
review, we further examine the works of Daly and Vojte [1], as well as Laradji
and Umar [5]. More recently, Francis, Adeniji, and Mogbonju [3], [8] introduced
the notion of the m-topological transformation semigroup space, characterizing it
as a family of transformation semigroups that fulfill the axioms governing topo-
logical spaces. Their study concentrated on a special class referred to as Regular
spaces, denoted by Mψn , where they analyzed the corresponding notions of work
done and power. Francis et al.[9], Roots of Tropical Polynomials in Clopen and
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Non-Clopen Discrete m-topological transformation semigroups.
The aim of this paper is to explore the work performed by m-topological trans-
formation semigroups, with particular emphasis on the quantification and as-
sessment of total work, average work, and power within the framework of m-
topological full transformation semigroup spaces, denotedMTn . Furthermore, this
study extends to examine the work associated with a subclass termed the closed
m-topological full transformation semigroup spaces, represented by MCTn , along
with the clopen m-topological transformation spaces, symbolized as Clp(MCTn).
The principal objective is to model elements of Mδ as collections of uniformly dis-
tributed points. We propose that the work executed by a transformation, when
mapping an element x from the domain of a fixed set n to its image αx in the
codomain, is captured by the metric distance |x − αx|. Consequently, the cu-
mulative work is computed as the aggregate of these distances as x varies across
the domain of n. Specifically, the displacement incurred by x is expressed as
d(x, αx) = |x − αx|. Accordingly, the overall work done on mδ is obtained by
summing these distances as α ranges over the domain corresponding to n. We
denote the total work executed by the m-topological transformation semigroup
by w(mδ). This encompasses the total work w(mδ), the mean (or average) work
indicated by w̄(mδ), and the corresponding power, denoted Pt(mδ).

Definition 1.1. [2] Let δ ∈Mδ and x ∈ Xn. We define the work of δ at x by

w(δ) =

{
|x− α(x)|, if x ∈ Dom(α),

0, otherwise.

The total work of δ is defined as

w(Mδ) =
∑
α∈Mδ

∑
x∈Xn

wx(Mδ) =
∑
α∈Mδ

∑
x∈Dom(α)

|x− α(x)|

The average work of δ is

w̄(Mδ) =
∑
x∈Xn

w(Mδ)

|Mδ|
.

Finally, the power of the transformations is defined by

Pt(Mδ) =
∑
x∈Xn

wt(Mδ)

t
, ∀ t ≥ 1.

Lemma 1.2. Let δ ⊆Mδ. Then

δ =
∑
α(x)

|x− α(x)|∆x,α(x)(Mδ),

where ∆x,α(x)(Mδ) denotes the set of all elements of Mδ that map x to α(x).

For x, α(x) ∈ Xn, we set

∆x,α(x)(Mδ) =
∣∣∆x,α(x)(Mδ)

∣∣,
and for every α ∈ ∆x,α(x)(Mδ) we write

wx(α) = |x− α(x)|.
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Example 1.3. The elements of MCTn and Clp(MCTn) in the smallest case are as
follows.

When n = 1:

MCT1 =

{(
1
∅

)}
, Clp(MCT1) = ∅.

When n = 2

|MCT2 | =
{ (

1 2
1 1

)
,

(
1 2
∅ 1

)
,

(
1 2
1 ∅

)
,

(
1 2
∅ ∅

) }
(1.1)

|Clp(MCT2)| =
{ (

1 2
1 1

) }
(1.2)

When n = 3

|MCT3| =



(
1 2 3
2 2 2

)
,

(
1 2 3
2 2 1

)
,

(
1 2 3
2 2 ∅

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 1 1

)
(

1 2 3
2 1 ∅

)
,

(
1 2 3
2 ∅ 2

)
,

(
1 2 3
2 ∅ 1

)
,

(
1 2 3
2 ∅ ∅

)
,

(
1 2 3
1 2 2

)
(

1 2 3
1 2 1

)
,

(
1 2 3
1 2 ∅

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 ∅

)
(

1 2 3
1 ∅ 2

)
,

(
1 2 3
1 ∅ 1

)
,

(
1 2 3
1 ∅ ∅

)
,

(
1 2 3
∅ 2 2

)
,

(
1 2 3
∅ 2 1

)
(

1 2 3
∅ 2 ∅

)
,

(
1 2 3
∅ 1 2

)
,

(
1 2 3
∅ 1 1

)
,

(
1 2 3
∅ 1 ∅

)
,

(
1 2 3
∅ ∅ 2

)
(

1 2 3
∅ ∅ 1

)
,

(
1 2 3
∅ ∅ ∅

)


(1.3)

From equation (1.3) we have:

|Clp(MCT3)| =


(

1 2 3
2 2 2

)
,

(
1 2 3
2 2 1

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 1 1

)
(

1 2 3
1 2 2

)
,

(
1 2 3
1 2 1

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
1 1 1

)


(1.4)

Example 1.4. Consider arbitrary elements of MT3 on n = 3, that is

MT3 =

{ (
1 2 3
1 3 1

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 3 2

)
,

(
1 2 3
1 1 1

) }
(1.5)

Where

α1 =

(
1 2 3
1 3 1

)
, α2 =

(
1 2 3
2 1 2

)
, α3 =

(
1 2 3
2 3 2

)
, α4 =

(
1 2 3
1 1 1

)

α1 ∪ α2 = α3 ∈MTn
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α1 ∩ α2 = α4 ∈MT3

Similarly;

α1 ∪ α3 = α3 ∈MT3

α1 ∩ α3 = α1 ∈MT3 .

MT3 satisfies the properties of m-topological transformation semigroups.

Example 1.5. Consider the elements of MCT2 in equation (1.1). To stabilize
the average work done and power within integer values, we introduce the floor
function, denoted as bxc, defined as {n | n ∈ Z+, n ≤ x < n + 1}. The work
done, average work done, and power are given as follows:

w(MCT2) =
∑
i∈n

w(MCT2) = 8,

The average work done by MT2

w̄(MCT2) =
∑
i∈n

w(MCT2)

|(MT2)|
=

8

4
= 2.

The power of MT2 for t = 5 is obtained as

P5(MCT2) =
∑
i∈n

w5(mCT2)

5
=

8

5
= 1.

2. Main Result

Lemma 2.1. Let Tn ⊆MTn. Then

MTn = nn

Lemma 2.2. For n ≥ 1,
n∑
i=1

n∑
j=1

|i− j| =
n(n2 − 1)

3
.

Proof. If i = j, then |i − j| = 0, so only pairs with i 6= j contribute. Since
|i− j| = |j − i|, we may restrict to pairs with i < j and double the result:

n∑
i=1

n∑
j=1

|i− j| = 2
∑

1≤i<j≤n

(j − i).

Fix k = j − i with 1 ≤ k ≤ n− 1. The pairs (i, j) with j − i = k are

(1, 1 + k), (2, 2 + k), . . . , (n− k, n),

so there are exactly n− k such pairs, each contributing k. Hence∑
1≤i<j≤n

(j − i) =
n−1∑
k=1

k(n− k).
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Now compute:
n−1∑
k=1

k(n− k) = n
n−1∑
k=1

k −
n−1∑
k=1

k2.

Using the formulas
n−1∑
k=1

k =
(n− 1)n

2
,

n−1∑
k=1

k2 =
(n− 1)n(2n− 1)

6
,

we obtain
n−1∑
k=1

k(n− k) =
(n− 1)n

6

(
3n− (2n− 1)

)
=

(n− 1)n(n+ 1)

6
.

Therefore,
n∑
i=1

n∑
j=1

|i− j| = 2 · (n− 1)n(n+ 1)

6
=
n(n2 − 1)

3
,

which proves the claim. �

Lemma 2.3. Let Tn ⊆MTn. Then

w(MTn) =
nn(n2 − 1)

3
. (2.1)

Proof. The number of transformations that map a fixed element x ∈ Xn to a fixed
value y ∈ Xn is nn−1, since the remaining n− 1 elements of Xn may be mapped
arbitrarily to any of the n values. Consequently, each ordered pair (x, αx) = (i, j)
contributes exactly nn−1 occurrences in the summation that defines the total
work.
Therefore

w(MTn) =
n∑
i=1

n∑
j=1

|i− j| nn−1 =

(
n∑
i=1

n∑
j=1

|i− j|

)
nn−1.

We now compute Sn :=
∑n

i=1

∑n
j=1 |i− j|. Note that

Sn = 2
∑

1≤i<j≤n

(j − i) = 2
n−1∑
k=1

n−k∑
i=1

k = 2
n−1∑
k=1

k(n− k).

Evaluate the last sum:
n−1∑
k=1

k(n−k) = n
n−1∑
k=1

k−
n−1∑
k=1

k2 = n·(n− 1)n

2
−(n− 1)n(2n− 1)

6
=
n(n− 1)(n+ 1)

6
.

Hence

Sn = 2 · n(n− 1)(n+ 1)

6
=
n(n2 − 1)

3
.

Substituting back gives

w(MTn) =
n(n2 − 1)

3
nn−1 =

nn(n2 − 1)

3
,

as required. �
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Lemma 2.4. Let Tn ⊆MTn. Then

w̄(MTn) =
n2 − 1

3
, Pt(MTn) =

nn(n2 − 1)

3t
.

Proof. By definition, the average work is

w̄(MTn) =
w(MTn)

|MTn|
.

From Lemma 2.3, we have

w(MTn) =
nn(n2 − 1)

3
, |MTn| = nn.

Therefore,

w̄(MTn) =
nn(n2−1)

3

nn
=
n2 − 1

3
.

The corresponding power is defined as work per unit time,

Pt(MTn) =
w(MTn)

t
=
nn(n2 − 1)/3

t
=
nn(n2 − 1)

3t
.

�

Theorem 2.5. Let CTn ⊆MTn Then

w(MCTn) =
nn(n2 + 2)

3
.

Proof. Write d(i, j) = |i − j|. Each ordered pair (i, j) contributes exactly nn−1

occurrences to the total-work sum. Therefore

w(MCTn) =
n∑
i=1

n∑
j=1

d(i, j)nn−1 =

(
n∑
i=1

n∑
j=1

|i− j|

)
nn−1.

For k ≥ 1 there are 2(n−k) ordered pairs (i, j) with |i−j| = k, while the diagonal
pairs contribute 0. Hence

n∑
i=1

n∑
j=1

|i− j| =
n−1∑
k=1

k · 2(n− k) = 2
n−1∑
k=1

k(n− k).

Evaluate the finite sum :
n∑
k=1

k(n−k) = n
n−1∑
k=1

k−
n−1∑
k=1

k2 = n·(n− 1)n

2
−(n− 1)n(2n− 1)

6
=
n(n− 1)(n+ 1)

6
.

Substituting gives

w(MCTn) = 2nn−1 · n(n− 1)(n+ 1)

6
= nn−1 · n(n2 − 1)

3
= nn · n

2 + 2

3
,

which is the closed form. �

Theorem 2.6. Let CTn ⊂MTn. Then

w̄(MCTn) =

⌊
n2 + 2

3

⌋
, Pt(MCTn) =

⌊
n2 + 2

3t

⌋
.
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Proof. From Theorem (2.5) we have

w(MCTn) = nn

(
1 +

2

n

n∑
k=1

k(n− k)

)
.

Since
n∑
k=1

k(n− k) =
n(n− 1)(n+ 1)

6
,

one obtains the simplified total-work formula

w(MCTn) = nn
(

1 +
2

n
· n(n− 1)(n+ 1)

6

)
= nn−1 · n

2 + 2

3
.

Therefore the average work (total work divided by |MCTn| = nn) is

w̄(MCTn) =

⌊
w(MCTn)

nn

⌋
=

⌊
n2 + 2

3

⌋
.

Similarly, dividing the total work by t nn−1 gives the time t of the work:

Pt(MCTn) =

⌊
w(MCTn)

t nn−1

⌋
=

⌊
n2 + 2

3t

⌋
.

�

Theorem 2.7. Let Clp(MCTn) ⊆MTn Then

Clp(MCTn =
n(2n− 1)(n− 1)n

6
.

Proof. By definition,

w(Clp(MCTn)) =
n∑
i=1

n∑
j=1

|i− j| · (n− 1)n−1.

For each k ≥ 1 there are 2(n− k) pairs with |i− j| = k. Hence

w(Clp(MCTn)) = (n− 1)n−1
n−1∑
k=1

2k(n− k).

We have
n∑
k=1

(2k − 1)(n− k) = 2
n∑
k=1

k(n− k)−
n∑
k=1

(n− k).

Evaluating gives
n∑
k=1

(2k − 1)(n− k) =
n(2n− 1)(n− 1)

6
.

Therefore

w(Clp(MCTn)) = (n− 1)n−1 · n(2n− 1)(n− 1)

6
=
n(2n− 1)(n− 1)n

6
.

�
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Theorem 2.8. Let Xn = {1, . . . , n}. Assume Clp(MCTn) ⊆ MTn, that for ev-
ery ordered pair (i, j) ∈ Xn × Xn the multiplicity equals (n − 1)n−1, and that
|Clp(MCTn)| = (n− 1)n. Set

S :=
n∑
k=1

(2k − 1)(n− k).

Then

w̄
(
Clp(MCTn)

)
=

S

n− 1
, Pt

(
Clp(MCTn)

)
=

S

(n− 1) t
.

Moreover, S has the closed form

S =
n(2n− 1)(n− 1)

6
,

so equivalently

w̄
(
Clp(MCTn)

)
=
n(2n− 1)

6
, Pt

(
Clp(MCTn)

)
=
n(2n− 1)

6t
.

Proof. By the multiplicity assumption,

w
(
Clp(MCTn)

)
= (n− 1)n−1

n∑
i=1

n∑
j=1

|i− j| = (n− 1)n−1 S.

Since |Clp(MCTn)| = (n− 1)n, the average work is

w̄
(
Clp(MCTn)

)
=
w(Clp(MCTn))

|Clp(MCTn)|
=

(n− 1)n−1 S

(n− 1)n
=

S

n− 1
.

The power (average work per unit time) is w̄/t, hence

Pt
(
Clp(MCTn)

)
=

S

(n− 1) t
.

Finally, evaluate S:

S =
n∑
k=1

(2k − 1)(n− k) =
n(2n− 1)(n− 1)

6
,

and substituting this closed form yields the simplified formulas above. �
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n |MTn| |MCTn | |Clp(MCTn)|
1 1 1 0
2 4 4 1
3 27 27 8
4 256 256 81
5 3125 3125 1024
6 46656 46656 15625
7 823543 823543 279936
8 16777216 16777216 5764801
9 387420489 387420489 134217728
10 10000000000 10000000000 3486784401

Table 1. Number of elements in m-Topological Full transforma-
tion, clopen transformation semigroup in Closed m-Topological Full
transformation semigroup spaces

n |w(MTn)| |w̄(MTn)| |P5w(MTn)|
1 0 0 0
2 4 1 0
3 72 2 14
4 1280 5 256
5 25000 8 5000
6 544320 11 108864
7 13176688 16 26355337
8 352321536 21 70464307
9 10331213040 26 2066242608
10 330000000000 33 66000000000

Table 2. Total work done, Average Work done and power on m-
Topological Full transformation semigroup spaces

n |w(MCTn)| |w̄(MCTn)| |P5w(MCTn)|
1 1 1 0
2 8 2 1
3 99 3 19
4 1536 6 307
5 20625 9 4125
6 590976 12 118195
7 14000231 17 2800046
8 369098752 22 73819750
9 10718633530 27 2143726706
10 340000000000 34 68000000000

Table 3. Total work done, Average Work done and power on
Closed m-topological Full transformation semigroup spaces
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n |w(Clp(MCTn))| w̄(Clp(MCTn)) |P5w(Cl(MCTn))
1 0 0 0
2 1 1 0
3 20 2 4
4 378 4 75
5 7680 7 1536
6 171875 11 34375
7 4245696 15 849139
8 115296020 20 23059204
9 3422552064 25 6845104128
10 110414839365 31 22082967873

Table 4. Total work done, Average Work done and power on
clopen m-topological Full transformation semigroup spaces

0 1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

Values of n

F
re

q
u
en

ce
of

A
ve

ra
ge

w
or

k
d
on

e

Plotting from Results

Exact points on w̄(MCTn)
Exact points on w̄(MTn)

Exact points on w̄(MTCTn)

Figure 1. Average workdone on w̄(Clp(MCTn)), w̄(MTn) and w̄(MCTn)

We plot the graph of the relationship between the values of average work done
from Table 2., Table 3., and Table 4. as shown in Figure 1.

3. Conclusion

It is essential to note that m-topological transformation semigroup spaces are
not simply individual elements but rather structured sets of transformations
that satisfy the properties of topological spaces. Our analysis demonstrates that
the algebraic invariants derived for these spaces admit natural connections with
integer sequences documented in [6]. Specifically, from Table 1., both |MTn|



LAGJMA-2025/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 61

and |w(MCTn)| correspond to [A000312], while |w(Cl(MCTn))| corresponds to
[A007778]. Similarly, from Table 2, |w(MCTn)| aligns with [A111868], and
|w(MTn)| corresponds to [A032765]. At the time of writing, the sequences aris-
ing from the tabulated results in Tables 1. and 2. had not yet appeared in [6],
thereby highlighting the novelty of our findings. These correspondences provide
not only a new combinatorial interpretation ofm-topological transformation semi-
group spaces but also suggest possible directions for further research in algebraic
combinatorics and topological semigroup theory.

Acknowledgment

The authors would like to express their sincere appreciation to the Editors and
the anonymous reviewers for their valuable comments, constructive suggestions,
and careful reading of the manuscript. Their efforts have greatly contributed to
improving the clarity, quality, and overall presentation of this work.

Authors Contribution

The first author carried out the main research work, including the formulation
of the problem, derivation of results, and preparation of the manuscript. The sec-
ond author, serving as the supervisor, provided overall guidance, critical insights,
and valuable suggestions that shaped the direction of the research. Both authors
discussed the results, reviewed the manuscript, and approved the final version for
submission.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publica-
tion of this paper.

Funding Statement.

The authors did not receive any external funding for the research

References

[1] D. Daly, P. Vojtch. How permutations displace points and stretch intervals. Ars Combina-
torica. 90 (2009), 175–191. Available at: http://arxiv.org/abs/1509.05649v1.

[2] J. East. On the work performed by a transformation semigroup. Australas. J. Combin.
49 (2011), 95–109. Available at: https://ajc-new.maths.uq.edu.au/pdf/49/ajc_v49_
p095.pdf.

[3] M. O. Francis, A. O. Adeniji, M. M. Mogbonju. Work done by m-topological transformation
semigroup regular spaces Mψn . Int. J. Math. Sci. Optim. Theory Appl. 9(1) (2023), 33–42.
DOI: https://doi.org/10.5281/zenodo.8217976.

[4] R. Kehinde, A. O. Habib. Numerical solutions of the work done on finite order-preserving
injective partial transformation semigroup. Int. J. Innov. Sci. Res. Technol. 5(9) (2020),
2456–2165.

[5] A. Laradji, A. Umar. Combinatorial results for semigroups of order-preserving partial
transformations. J. Algebra. 278 (2004), 342–359. DOI: https://doi.org/10.1016/j.

jalgebra.2003.10.023.
[6] N. J. A. Sloane. Online Encyclopedia of Integer Sequences. Available at: https://oeis.

org/.

[A000312]
[A007778]
[A111868]
[A032765]
http://arxiv.org/abs/1509.05649v1
https://ajc-new.maths.uq.edu.au/pdf/49/ajc_v49_p095.pdf
https://ajc-new.maths.uq.edu.au/pdf/49/ajc_v49_p095.pdf
https://doi.org/10.5281/zenodo.8217976
https://doi.org/10.1016/j.jalgebra.2003.10.023
https://doi.org/10.1016/j.jalgebra.2003.10.023
https://oeis.org/
https://oeis.org/


62 M. O. FRANCIS AND A. O. ADENIJI

[7] A. Umar. Some combinatorial problems in the theory of partial transformation semigroups.
Algebra Discrete Math. (2014), 1–26.

[8] M. O. Francis, A. O. Adeniji, M. M. Mogbonju. Operation and vector spaces on m-
topological transformation semigroups. J. Linear Topol. Algebra. 12(2) (2023), 133–140.
DOI: https://doi.org/10.30495/jlta.2023.704265.

[9] M. O. Francis, L. F. Joseph, A. T. Cole, B. Oshatuyi. Roots of tropical polynomial from
clopen and non-clopen discrete m-topological transformation semigroups. Internat. J. Adv.
Math. Sci. 10(2) (2024), 37–47. DOI: https://doi.org/10.14419/4h3jjx97.

Moses Obinna Francis∗

Department of Mathematical Sciences, Bingham University Karu, Nasarawa,
Nigeria.

E-mail address: francis-moses.obinna@binghamuni.edu.ng

Adenike Olusola Adeniji
Department of Mathematics, University of Abuja, P.M.B 117, Abuja-FCT, Nige-
ria.

E-mail address: adeniji4love@yahoo.com

https://doi.org/10.30495/jlta.2023.704265
https://doi.org/10.14419/4h3jjx97

	1. Introduction
	2. Main Result
	3. Conclusion
	Acknowledgment
	Authorsâ•Ž Contribution
	Conflict of Interest
	Funding Statement.
	References

