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WORK PERFORMED BY CLOSED AND CLOPEN
M-TOPOLOGICAL FULL TRANSFORMATION SEMIGROUP
SPACES Mcr, AND Clp(Mcr,)

MOSES OBINNA FRANCIS* AND ADENIKE OLUSOLA ADENIJI

ABSTRACT. Let a and 8 be two elements of an m-topological transforma-
tion semigroup space. In this paper, we introduce and derive explicit formu-
las for the work performed by elements in the full transformation semigroup
M, , the closed m-topological semigroup Mcr,, and its clopen counterpart
Clp(Mer,), where the displacement of a point  under a transformation «
is given by d(z,ax) = |z — ax|. We further establish explicit formulas for
the average work and the power within these semigroup spaces. To ensure
that the system stabilizes to integer values, we incorporate the floor function
|z| ={n|neZ" n<z<n+1}. Numerical evaluations confirm the validity
of the derived formulas and reveal consistent growth patterns, thereby high-
lighting new combinatorial properties of m-topological transformation semi-
group spaces.

1. INTRODUCTION

Let X, = {1,2,3,...,n}. A transformation a : Doma C X,, - Ima C X,
is said to be full if its domain satisfies Dom o = X,,; otherwise, it is classified as
strictly partial (see Umar [6]). The study of work performed by transformation
semigroups was recently initiated by East and McNamara [2], inspired by a pre-
sentation delivered by Lavers at a semigroup special interest meeting in Sydney
in 2004. Kehinde et al. [4] introduced the notion of power in transformation
semigroups and provided graphical illustrations of their numerical results. In this
review, we further examine the works of Daly and Vojte [1], as well as Laradji
and Umar [5]. More recently, Francis, Adeniji, and Mogbonju [3], [8] introduced
the notion of the m-topological transformation semigroup space, characterizing it
as a family of transformation semigroups that fulfill the axioms governing topo-
logical spaces. Their study concentrated on a special class referred to as Regular
spaces, denoted by M, , where they analyzed the corresponding notions of work
done and power. Francis et al.[9], Roots of Tropical Polynomials in Clopen and
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Non-Clopen Discrete m-topological transformation semigroups.

The aim of this paper is to explore the work performed by m-topological trans-
formation semigroups, with particular emphasis on the quantification and as-
sessment of total work, average work, and power within the framework of m-
topological full transformation semigroup spaces, denoted My, . Furthermore, this
study extends to examine the work associated with a subclass termed the closed
m-topological full transformation semigroup spaces, represented by Mcr, , along
with the clopen m-topological transformation spaces, symbolized as Clp(Mcr,).
The principal objective is to model elements of My as collections of uniformly dis-
tributed points. We propose that the work executed by a transformation, when
mapping an element x from the domain of a fixed set n to its image ax in the
codomain, is captured by the metric distance |x — ax|. Consequently, the cu-
mulative work is computed as the aggregate of these distances as x varies across
the domain of n. Specifically, the displacement incurred by x is expressed as
d(xz,arx) = |r — ax|. Accordingly, the overall work done on my is obtained by
summing these distances as a ranges over the domain corresponding to n. We
denote the total work executed by the m-topological transformation semigroup
by w(ms). This encompasses the total work w(ms), the mean (or average) work
indicated by w(ms), and the corresponding power, denoted P, (ms).

Definition 1.1. [2] Let § € Ms and = € X,,. We define the work of § at = by
|z — a(x)], if x € Dom(a),
w(d) = {

0, otherwise.
The total work of § is defined as
ITAED DD INTINS Sl I TEE
aEMs zeX, a€EMs z€Dom(a)

The average work of § is

Finally, the power of the transformations is defined by

M
P(M;) =) —wt(t ) iz
reX,

Lemma 1.2. Let 6 € Ms. Then
5 = Z|x—a )| Ay o) (Ms),

where Ay o2y (Ms) denotes the set of all elements of My that map x to a(x).
For z,a(x) € X,,, we set
Aac,oc(:v)(Mé) = ‘Aac,a(a:) (Mé) )

and for every o € Ay o) (Ms) we write

wy () = |z — a(z)].
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Example 1.3. The elements of Mo, and Clp(Mer,) in the smallest case are as

follows.
When n = 1;
1
MCTl = {(@) }7 Clp(MCT1> =49
When n =2
1 2 1 2 1 2 1 2
1 2
cnoien) ={ (1 1) } (12)
When n =3
( (1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
222)'\221/)'\220)'\212)\211
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
21 0/)°\ 20 2)'\201)°'\L200)\122
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Mo, | = 121)°\V1r209/)°V112)°\111)'V110
|Mer,| = 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
19 2)°v1 o 1)\ 10 0)\V022)\0 21
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
20 )°\vo 127V 1 1)V e 1 0)°\0 0 2
1 2 3 1 2 3
\ 00 1)\0 0 0
(1.3)
From equation (|1.3) we have:
1 2 3 1 2 3 1 2 3 1 2 3
222 )'\t221/)'\212)/)'\211
Clp(Mer,)| = 1 2 3 1 2 3 1 2 3 1 2 3
122)'V121)°V112)' 111
(1.4)

Example 1.4. Consider arbitrary elements of My, on n = 3, that is

123\ /1 23\ /1 2 3\ /1 2 3
Ah:{@3i)@12)@32)@11)} (1.5)
3 (123 (123 B
1 )02 V21 9 ) 7923292 )M~

quozgzongMTn

Where

1
011:(1

w N
— =
— N
—
~_
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@1ﬂ&2:a4€MT3

Similarly;
o Uag = as E]M'T3
(03] mOég =oq € MT3.
My, satisfies the properties of m-topological transformation semigroups.

Example 1.5. Consider the elements of Mcr, in equation (1.1). To stabilize
the average work done and power within integer values, we introduce the floor
function, denoted as |x], defined as {n | n € Z*,n < z < n+ 1}. The work
done, average work done, and power are given as follows:

w(MCTz) = Zw(MCTQ) =38,

1EN

The average work done by Mrp,
w(Mcr,)
w (M, 2) =-=2.
o) Z (Mg, 4
1En
The power of My, for t = 5 is obtained as

Ps(Mcr,) :ZM = § =1.
icn
2. MAIN RESULT
Lemma 2.1. Let T,, C My, . Then
My, =n"

Lemma 2.2. Forn > 1,
e~ n(n?—1
>l = M
i=1 j=1

Proof. 1If i = j, then |i — j| = 0, so only pairs with ¢ # j contribute. Since

li — j| = |7 — i|], we may restrict to pairs with i < j and double the result:
2.2 limil=2 >, (=i
i=1 j=1 1<i<j<n

Fix k =j —i with 1 <k <n —1. The pairs (i, j) with j —i = k are
(L1+k),(2,24k),...,(n—k,n),
so there are exactly n — k such pairs, each contributing k. Hence

Z (j—1) an—

1<i<j<n
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Now compute:

n—1 n—1 n—1
dkn—k)y=nd k-> K
k=1 k=1 k=1
Using the formulas
n—1 n—1
_(n—=1)n 5 (n—1)n(2n—1)
k= 2 ’ Zk - 6 ’
k=1 k=1
we obtain
n—1
—1 —1 1
Z k(n —k) = (n = Ln (Bn—(2n—-1)) = (n = Dn(n+1)
6 6
k=1
Therefore,
L n—1nn+1) nn*-1
ZZ“_ﬂ:Q'( )6( ) _n( . )’
i=1 j=1
which proves the claim. O
Lemma 2.3. Let T,, C My, . Then
n*(n?—1
wMy,) = =1 . ) (2.1)

Proof. The number of transformations that map a fixed element x € X, to a fixed
value y € X, is n™!, since the remaining n — 1 elements of X,, may be mapped
arbitrarily to any of the n values. Consequently, each ordered pair (z, ax) = (i, j)
contributes exactly n™ ! occurrences in the summation that defines the total
work.

Therefore

w(Mr,) =Y > li—jln"" = (ZZ i — j\) n"

i=1 j=1 i=1 j=1
We now compute S, := 3 ", 37 |i — j|. Note that

Evaluate the last sum:

n—1 —, .o (=Dn (n-Dn@n-1) n(n-1)(n+1)
2 k) =n k=) K= ) |

6 6
k=1
Hence . . 24
o o nn= DD a(-1)
6 3
Substituting back gives
() = M=) s 102 21)

as required. O
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Lemma 2.4. Let T,, C Mp,. Then

n?—1 n"(n* —1)
o(Mr,) = P(Mp)=———.
Proof. By definition, the average work is
_ w(MT )
w(Mr, ) = =
( Tn) |MTH‘
From Lemma [2.3] we have
n"(n? —1
T e R A
Therefore,
n™(n?—1) 9
n-—1
(M) = 3 =
w(Mr,) o 3

The corresponding power is defined as work per unit time,

w(M n*(n?—-1)/3 n*(n?>-1
Py - BOI) _ nR = DJ3 nn(e? = 1)
t t 3t
O
Theorem 2.5. Let C'T,, C My, Then
n"(n? + 2
w(MCTn) = %

Proof. Write d(i,7) = |i — j|. Each ordered pair (i, ) contributes exactly n"!

occurrences to the total-work sum. Therefore
w(Mer,) = 373 di )t = (zz i —jr>nn1.
i=1 j=1 i=1 j=1

For k > 1 there are 2(n—k) ordered pairs (7, j) with |i—j| = k, while the diagonal
pairs contribute 0. Hence

—_

n—

ZZ|i—j|:ik-2(n—k):2 k(n —k).

i=1 j=1 1

i

Evaluate the finite sum :

n

nol nol ) n—1n (n—1n2n—-1 nn—1)(n+1
k(n—k):nZk—;k = nd 5 L )6( 1 E)i( =

k=1 k=1
Substituting gives

—1 1 21 249
w<MCT ):2nn—1. n(n )(n+ ) :nn—l‘ n(n ) :nn‘ n® + ,
" 6 3 3
which is the closed form. O
Theorem 2.6. Let C'T,, C Mry,. Then
3 n?+ 2 n?+ 2
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Proof. From Theorem ({2.5) we have

w(MCTn)—n"<1+% Y k(n—k))

k=1
Since

= _n(n—1)(n+1)
> k(n—k) = .

)

one obtains the simplified total-work formula

n 2 n(n—1)(n+1 neq A2
Therefore the average work (total work divided by |Mer, | = n") is
M 242
w(Mecr,) = {w( CTn)J = VL i J :

nn 3

Similarly, dividing the total work by tn™~! gives the time t of the work:

A(Mor.) = Lw(MCTn)J _ Vﬂ +2J ‘

tnn1 3t

Theorem 2.7. Let Clp(Mcr,) € My, Then
n(2n—1)(n—1)"

Clp<MCTn =

Proof. By definition,

n n

w(Clp(Mer,)) =Y ) li—jl-(n=1)""

=1 j=1

For each k > 1 there are 2(n — k) pairs with |i — j| = k. Hence

w(Clp(M¢r,)) = (n — 1)1 ”Z_: 2k(n — k

We have

n

Z(Qk—l —2an— —i(n—k).

k=1
Evaluating gives

~n(2n—1)(n—1)
> @2k—1)(n—k) = - .

Therefore
w(Clp(Mer,)) = (n— 1) n2n—1)(n—1) n2n—1)(n—1)"

6 N 6

57



58 M. O. FRANCIS AND A. O. ADENILJI

Theorem 2.8. Let X,, = {1,...,n}. Assume Clp(Mcr,) C Mry,, that for ev-
ery ordered pair (i,7) € X, x X,, the multiplicity equals (n — 1)""', and that
|Clp(Mer,)| = (n— 1)™. Set

k=1
Then
_ S S
w(Clp(Mer,,)) = 1 P,(Clp(Mcr,))
- (n—1)t
Moreover, S has the closed form
g n(2n —1)(n —1)
6 )
so equivalently
n(2n —1 n(2n —1
w(Clp(Mcr,)) = ¥7 P(Clp(Mcr,)) = %

Proof. By the multiplicity assumption,
w(Clp(Mcr,)) = (n=1)"") > Ji—jl=(n-1)""s.
i=1 j=1

Since |Clp(Mer,)| = (n — 1)", the average work is

_ ~ w(Clp(M¢r,))  (n-1"'s S
w(Clp(MCTn>) = |Clp(Mcr,) - (n—1)n Con—1"

The power (average work per unit time) is w/t, hence

P(Clp(Mcr,)) = R

Finally, evaluate S:

S=S"(2k—-1)(n—k) = ,

and substituting this closed form yields the simplified formulas above. O
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n | M, | |Mcr,| | |Clp(Mcr,)|
1 1 1 0

2 4 4 1

3 27 27 8

4 256 256 81

5) 3125 3125 1024

6 46656 46656 15625

7 823543 823543 279936

8 16777216 16777216 5764801
9 | 387420489 387420489 134217728
10 | 10000000000 | 10000000000 | 3486784401

TABLE 1. Number of elements in m-Topological Full transforma-
tion, clopen transformation semigroup in Closed m-Topological Full
transformation semigroup spaces

n | Jw(Mg,)| | [o(Mg,)] | [Psw(Mg,)|
1 0 0 0

2 4 1 0

3 72 2 14

4 1280 5 256

5 25000 8 5000

6| 544320 11 108864

7| 13176688 16 26355337
8 | 352321536 21 70464307
0 | 10331213040 | 26 | 2066242608
10 | 330000000000 | 33 | 66000000000

TABLE 2. Total work done, Average Work done and power on m-
Topological Full transformation semigroup spaces

n [ Tw(on) | [@(Mer) | 1Pow(Mer,)]
1 1 1 0

2 8 2 1

3 99 3 19

4 1536 6 307

5 20625 9 4125

6 590976 12 118195

7 14000231 17 2800046

8 369098752 22 73819750
9 | 10718633530 27 2143726706
10 | 340000000000 34 68000000000

TABLE 3. Total work done, Average Work done and power on
Closed m-topological Full transformation semigroup spaces

59
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n | |Jw(Clp(Mcr,))| | w(Clp(Mcr,)) | |[Psw(Cl(Mcr,))
1 0 0 0
2 1 1 0
3 20 2 4
4 378 4 75
5 7680 7 1536
6 171875 11 34375
7 4245696 15 849139
8 115296020 20 23059204
9 3422552064 25 6845104128
10 | 110414839365 31 22082967873

TABLE 4. Total work done, Average Work done and power on
clopen m-topological Full transformation semigroup spaces

Plotting from Results

I I I I I I I I
—5— Exact points on w(Mcr,)
—5- Exact points on @w(Mry,)

Exact points on w(Mrcr,)

&

Frequence of Average workdone
[\]
(@)
rrrrrrrr1rrrrr 1 1111 T T T T T 171

OO

o

Values of n

FIGURE 1. Average workdone on w(Clp(Mcr,)), w(Mrz,) and w(Mer,)

We plot the graph of the relationship between the values of average work done
from Table 2., Table 3., and Table 4. as shown in Figure 1.

3. CONCLUSION

It is essential to note that m-topological transformation semigroup spaces are
not simply individual elements but rather structured sets of transformations
that satisfy the properties of topological spaces. Our analysis demonstrates that
the algebraic invariants derived for these spaces admit natural connections with
integer sequences documented in [6]. Specifically, from Table 1., both |Mr, |
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and |w(Mer,)| correspond to [[A000312], while |w(CIl(Mcr,))| corresponds to
[A007778]. Similarly, from Table 2, |w(Mer,)| aligns with [A111868], and
|w(Mr, )| corresponds to |[A032765]. At the time of writing, the sequences aris-
ing from the tabulated results in Tables 1. and 2. had not yet appeared in [6],
thereby highlighting the novelty of our findings. These correspondences provide
not only a new combinatorial interpretation of m-topological transformation semi-
group spaces but also suggest possible directions for further research in algebraic
combinatorics and topological semigroup theory.
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