Unilag Journal of Mathematics and Applications,
Volume 5 Issue 1 (2025), Pages 13-38.
ISSN: 2805 3966. URL: http://lagjma.edu.ng

TWO PARETO OPTIMUM-BASED HEURISTIC ALGORITHMS
FOR MINIMIZING TARDINESS AND LATE JOBS IN THE
SINGLE MACHINE FLOWSHOP PROBLEM

MATTHEW GRADWOHL!, GUIDIO SEWA?, OKE BLESSING OGHOJAFOR?,
RICHARD WILOUWOU*, MUMINU ADAMU?, AND CHRISTOPHER THRON*1

ABSTRACT. Flowshop problems play a prominent role in operations research,
and have considerable practical significance. The single-machine flowshop
problem is of particular theoretical interest. Until now the problem of minimiz-
ing late jobs or job tardiness can only be solved exactly by computationally-
intensive methods such as dynamic programming or linear programming. In
this paper we introduce, test, and optimize two new heuristic algorithms for
mixed tardiness and late job minimization in single-machine flowshops. The
two algorithms both build partial schedules iteratively. Both also retain Pareto
optimal solutions at intermediate stages, to take into account both tardiness
and late jobs within the partial schedule, as well as the effect of partial com-
pletion time on not-yet scheduled jobs. Both algorithms can potentially be
applied to scenarios with hundreds of jobs, with execution times running from
less than a second to a few minutes. Although they are slower than dispatch
rule-based heuristics, the solutions obtained are far better. We also attempted
a neural-network solution which performs poorly, and propose reasons why
neural networks may not be a suitable approach.

1. BACKGROUND AND MOTIVATION

1.1. The flowshop problem: an example of a scheduling problem. In
general, a scheduling problem consists of organizing the execution of a sequence
of jobs over time, taking into account time constraints (deadlines, sequence con-
straints) and constraints related to the availability of the required resources. This
problem framework can be applied to a variety of practical situations, by mod-
ifying the interpretation given to jobs, machines and the necessary resources.
Scheduling problems comprise a widely studied and complex combinatorial opti-
mization problem.

2010 Mathematics Subject Classification. Primary: 22E30. Secondary: 58J05.
Key words and phrases. flowshop, scheduling, optimization, lateness, heuristic, Pareto, neu-
ral network .
Submitted: April 18, 2025. Revised: June 9, 2025. Accepted: July 14, 2025.
* Correspondence.
13

14 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

An important example of a scheduling problem is the flowshop problem. In
general, a flowshop may be described as a system in which several “jobs” re-
quire processing on several sequential “machines”. In different circumstances
“machines” may refer to various types of processors (factory robots, line work-
ers, editors, computer processors, etc.) that perform specified examinations or
modifications of objects (automobiles, products, documents, computer programs,
etc.), which are designated as “jobs”. In the flowshop problem, all jobs must pass
through all the machines one by one in the same sequence. A machine can only
process one job at a time. In order to be processed on machine m, the job must
first pass through machines 1, ..., m—1, and it is not possible for two machines to
work on the same job at the same time. In practice, flowshop problems occur in
a wide variety of manufacturing industries including fabrics, chemicals, electron-
ics, automotive, ([1],[2],[3]), iron and steel [4], food processing [5], ceramic tile
[6], packaging and branding, pharmaceuticals, and paper manufacture [7] among
others.

The flowshop problem is an example of a matching problem: for each machine,
each job must be matched with a position. The solution to a matching problem
can be expressed mathematically as a permutation. For example if we have three
jobs, we may index them as 1,2, 3. If job 2 is executed first, then job 3 and finally
job 1, then this job ordering may be described using the permutation (2,3, 1).

1.2. Common variants of the single-machine

flowshop problem. In different practical situations the flowshop managers may
have different objectives. In some cases, the objective may be to minimize
makespan, defined as the total time required to complete all jobs. Alternatively,
the manager may be primarily interested in meeting the customers’ requested
deadlines.

There is an extensive literature on solution methods for variants of the flowshop
problems, for single or multiple machines. For the makespan minimization single-
machine flowshop problem, an efficient exact algorithm has been found. [§ A
comprehensive review and evaluation of several heuristics and metaheuristics for
the flowshop problem with total tardiness minimization may be found in [9].
Benchmarks for the permutation flowshop problem are presented in [10] and [L1].

In this paper, we consider situations where all jobs have due times, and each
tardy job has a fixed penalty for being tardy, plus an additional penalty that is
proportional to the amount of time that it is tardy. There is no bonus for jobs
that are finished early. For example if the fixed penalty is 10 and the tardiness
penalty rate is 5, then a job that is 3 days tardy has cost 10 + 3 -5 = 25.

2. METHODS
2.1. Mathematical specification of flowshop model.
2.1.1. Constants and variables. Our flowshop model can be expressed mathemat-

ically in terms of the following constants and variables.
Constants: All constants listed here are positive real numbers.

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 15

® ay,...ay: Arrival times for jobs at the flowshop. Jobs are listed in order
of arrival, so the n’th job to arrive has index n;

e di,...dy: Due times, where d,, is the due time for the job that has arrival
time a,

e 11,...xN: Processing times, where z,, is the processing time of the job
with index n.

e p: fixed penalty (cost) if a job is tardy;

e ¢: Tardiness penalty coefficient if a job is tardy. For example, if job n
arrives at time d,, +t, then the tardiness penalty for that job is gt (this is
in addition to the fixed penalty p).

Variables:

e Tardiness: w;, € RT wy is the tardiness of the k’th job to finish. Note
that this is not the same as the job with index n. The tardiness is always
nonnegative (N real variables).

e Matching variables: u,; € {0,1}, where 1 <n,k < N. u,, = 1if jobn is
the &’th job scheduled. Otherwise, u,; = 0 (N? binary variables).

e Starting times: s,; € R*: Starting times, where 1 < n,k < N. If u,; is
0, then s, is also 0. Otherwise, s, is the starting time of job n (note that
job n is the k’th job to execute (N? real variables). Under this definition,
> & Snk Will be the starting time of job n, and) s, is the starting time
of the k’th job scheduled.

e Tardy indicators: vy, € {0, 1}; v = 1 if the k’th job to complete is tardy,
and 0 otherwise (N binary variables).

2.1.2. Objective function. In this paper, we will consider the problem of minimiz-
ing a penalty that depends both on the number of tardy jobs and on tardiness,
as described in Section In the mathematical specification, this corresponds
to the following objective function:

N N
Zq-wk—l—Zp-vk (2.1)
k=1 k=1

2.1.3. Constraints.
e Matching conditions (2N equality constraints):

Zunk:1Vk; Zunk:1Vn (2.2)
n k

o Lateness lower bound for kth job scheduled (N inequality constraints):

—w > (S + U (2 —) <0, 1<k <N. (2.3)

e Positivity of tardiness for job in position k (N inequality constraints):

This constraint and the previous constraint ensure the correct value of
tardiness.

16 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

e Tardy binary indicators (N inequality constraints):
wk—C’big * Vg S 0 Vk’, (25)

where Cyg is a very large number. This constraint guarantees that v, = 1
whenever wy > 0, and otherwise v, = 0.
e Starting time follows arrival (N constraints):

— Z S < —ay,. (2.6)
k

e Starting time constraint for consecutive jobs (N — 1 constraints):

Z (Snk — Sn(k:—‘,—l)) + Zunk:cn < O, k < N. (27)

n

(A job cannot start until the previous job is finished.)
e Nonnegative starting times(N? constraints):

e Starting times agree with matching variables (N? constraints):
Snk — C(big * Unk S Oa (29)

where Ch;, is a very large number. (This guarantees that s,; is only
positive when u,; = 1.)

Note that constraint (4) is actually implied by the requirement that
wy € RT—we have included it in the constraint list for clarity.

2.2. Algorithms for solution and approximate solution. The mathematical
problem described in Section can be solved exactly using mixed-integer linear
programming (MILP), since both the objective function and all of the constraints
described in Section are linear. However, the solution is computationally
prohibitive except for very small systems. For larger systems, we must rely on
approximate algorithms, which are typically either heuristic or stochastic. A
newer alternative to these conventional methods is neural network.

2.2.1. FEuxisting heuristic scheduling algorithms. The simplest and fastest classic
heuristics use dispatch rules to determine the job execution order. According
to [12], some dispatch rules that have been utilized include Earliest Due Time
(EDD) (i.e., the job with the soonest due time runs first), Shortest Processing
Time (SPT) and Longest Processing Time (LPT) (i.e. the fastest to process or
slowest to process is run first, respectively). [13] identifies an additional dispatch
heuristic Critical Ratio, which takes the amount of time left to process each job
before its due date and divides by the processing to give each job a priority index,
with higher priority given to the job with the lowest priority index.

Iterative heuristics add some number of jobs at a time and evaluate possible
orders before moving on, with the order to be tried determined based on initial
criteria, possibly using one of the above algorithms. Existing methods include
the Palmer heuristic which calculates an index for each job and uses that to
determine the initial order [14], and the NEH heuristic, which prioritizes jobs
with longer executions over possibly multiple machines [15]. Until now it appears

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 17

that the Palmer heuristic has not been adapted to tardiness minimization. On
the other hand, there is a modification of NEH (called "NEHedd”) that can be
applied to tardiness minimization problems [16]. Like NEH, NEHedd proceeds
by iteratively constructing longer and longer job sequences, such that the final
constructed sequence is the estimated job order. During the iterative process
prescribed by NEHedd, it is often the case that more than one partial sequence
meets the critierion for selection, i.e. there are "ties” between equally qualified
partial sequences. Various mechanisms can be used to resolve these "ties” [17].
However, previous tie-breaking criteria do not make use of Pareto optimality to
take into account the multi-criteria nature of the intermediate problems.

2.2.2. Neural network solution for single-machine problem.

Background

Neural networks (NN) have the potential of obtaining near-optimal solutions
very quickly. The training process for a NN may be time-consuming, but once
trained the NN can execute extremely rapidly, even for sophisticated, deep neural
networks with millions of parameters.

We construct a NN to solve the single-machine flowshop problem as follows.

Neural network structure

The NN used is a shallow network consisting of 3 layers: an input layer, a
hidden layer, and an output layer. Figure [1| displays the output of tensorflow’s
summary command showing the structure of the neural network, indicating the
layers, connections, and input and output sizes. A more complete description of
the network is as follows.

input 1 mput: | [(None, 3, §)]
InputLayer | output: | [(None, 3, 8)]

\
flatten | input: | (None, 3, §)

Flatten | output: | (None, 24)

dense | input: | (None, 24)

Denge | output: | (None, 32)

dense 1 | input: | (None, 32)

Dense | output: | (None, §)

F1GURE 1. Neural network layer structure for a single-machine sys-
tem with 8 jobs. Numbers in the right-hand boxes indicate the sizes
of input and output arrays for each layer.

18 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

e [nput layer: The inputs are arranged as a 3 X N matrix. The three rows
of the matrix contain availability times, processing times, and due times
respectively, with column j representing the job with index j.

o Hidden layer: The hidden layer is fully connected. The number of nodes
and the number of hidden layers were selected based on performance for
N = 8 jobs.

e Qutput layer: This layer is fully-connected with N nodes, and a sigmoid
activation function that produces values between 0 and 1. The estimated
schedule is obtained by ordering the outputs. For example, if the NN pro-
duces the output [0.3,0.4,0.2] then the job order should be the third job
(lowest value) followed by the first job and lastly the second job (highest
value). In the python code, this ordering is recovered using the command
argsort.

2.2.3. Pareto-based heuristics for single-machine problem. In this paper we pro-
pose two novel heuristic methods, which we designate as ”iterative insertion” and
"iterative selection”.

The iterative insertion algorithm is similar to the NEH algorithm that is used
for makespan minimization. Modifications must be made to accommodate special
difficulties posed by the tardiness-tardy time minimization criteria. In particular,
since multiple criteria are used to determine “good” solutions at intermediate
stages, we use Pareto optimality as a selection criterion to determine multiple
candidate solutions.

On the other hand, we did not see any algorithm in the literature that is com-
parable to iterative selection. Iterative selection also relies on Pareto optimality
to obtain a set of candidate solutions at each intermediate stage.

In the following subsections, we provide detailed descriptions of the iterative
insertion and iterative selection algorithms.

Iterative insertion

I[terative insertion proceeds as follows. First, a preliminary ordered list of jobs
is created, possibly using one of the simple heuristics mentioned in Section [2.2.1]
During the algorithm, jobs are selected from this preliminary list one by one. The
algorithm creates a series of lists of ordered lists as follows.

e The first list of ordered lists is a list with a single element containing the
first preliminary job.

e The second list of ordered lists is formed as follows. Using the single list in
the first list of lists (which at this stage contains a single element), insert
the next preliminary job at each possible point in the list (at this point,
there are two possible insertion points), to create two different lists of two
elements. For each of these 2-element lists, evaluate the tardiness penalty
and the finish time associated with these job orderings, and retain all of
the Pareto-optimal orderings.

e Each subsequent stage of the algorithm resembles the second stage. For
stage m, the m’th element of the preliminary list is selected, and inserted
at each possible point in all lists in the list of lists that was created at

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 19

the m — 1'th stage. For each of the resulting lists, evaluate the tardiness
penalty and the finish time associated with the given job ordering, and
retain all Pareto-optimal orderings.

e At the last stage, retain only the lists with minimal tardiness penalty.

We may give a specific example of the algorithm as follows. Suppose the
preliminary order of jobs is [4,3,2,1]. At the first stage, the list of lists is [[4]].
At the second stage, the lists [4, 3] and [3, 4] are evaluated for tardiness and finish
time. Suppose that both tardinessses are 0, and the finish times are equal. Then
both ordered lists are retained: so at the end of the second stage, the list of
ordered lists is [[4, 3], [3,4]]. At the third stage, job 2 is inserted at each point
within each list of ordered lists from the second stage. This produces a list of
6 ordered lists: [[2,4,3],[4,2,3],[4,3,2],[2,3,4],[3,2,4],[3,4,2]]. Of these, select
those job orderings which are Pareto optimal with respect to tardiness and finish
time. We may suppose for example that this reduces the list to 3 ordered lists:
[[2,4,3],[2,3,4],[3,2,4]]. Finally, we insert job 1 at each position in each of these
lists, giving rise to 12 ordered lists. From these 12 ordered lists, we select one
that has minimum tardiness, since each minimum-tardiness solution is equally
optimal.

In the example above, we note that an exhaustive evaluation of all possible job
orderings would require 4! = 24 evaluations for 4 jobs, considerably more than
the 12 we ended up evaluating. The savings for larger numbers of jobs depends
on the number of ordered lists retained from stage to stage. If for example this
number is bounded by B, then the number of evaluations at stage m is (m+1)B,
so that the total number of evaluations grows quadratically with the number of
jobs (rather than exponentially).

In the above algorithm, the starting list of ordered lists contains a single ele-
ment, which consists of a single job. we may define a variant of the algorithm
as follows. Instead of starting with a single-element list, take the first J jobs
in the preliminary list, and use as starting list the J! permutations of the first
J jobs. From this list, retain the Pareto optimal orderings, and then continue
the algorithm as described above. J must not be chosen too large: for example,
J = 5 means that the starting list has 120 permutations,

When calculating the penalty and finish time for the different jobs with inser-
tion, it is possible to reduce computation time by intelligently choosing the order
of calculation. For example, if job 3 is to be inserted in the list [2,6, 4,5, 1], then
one may first calculate the penalty and finish time when the new job 3 is inserted
in the last place, i.e. [2,6,4,5,1,3]. Next, insert the new job 3 in the second to
last place, i.e. [2,6,4,5,3,1]. Then one may reuse the calculated finish times for
2,6,4,5, because these jobs’ starting and finishing times remain unchanged. If
the calculation is done this way, the complexity is reduced by a factor of 2.

Similarly, if the variant where the starting list consists of J jobs the finish
times and tardinesses for the J! orderings may be calculated more efficiently
by ordering the calculations properly. For example, consider the case where one
wants to calculate the penalties and finish times for all permutations of [1,2, 3, 4].
We may first calculate and store the penalties and finish times for each of the

20 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

single-element ordered lists, namely [1], [2], [3], and [4]. Then for example we
may use the result for [1] to calculate the finish times and penalties for the 2-
element ordered lists that start with 1, namely [1,2], [1,3], [1,4]. Similarly, we
may use [2]| to calculate the finish times and penalties for the 2-element ordered
lists that start with 2, namely [2,1], [2,3], [2,4]. We may do the same with [3]
and [4]. Then we may use the results from [1,2] to calculate results for [1,2, 3]
and [1,2,4]: and so on. This method will reduce calculation by 1/2.
Two modifications were introduced to limit the complexity of the algorithm:

e [t is possible that after several iterations, the set of Pareto optimal can-
didates may become unmanageably large. We counteract this effect by
limiting the number of Pareto optimal solutions retained. This is done
by retaining a representative subset of permutations from the Pareto op-
timal list for each iteration. We thus introduce a tuneable parameter P
correponding to the maximum number of permutations retained. In order
to maintain a variety among the sequences that are retained, the Pareto
optimal candidates are sorted by completion time, and every |L/P]’th
sequence is retained, where L is the number of candidates.

e One can also limit the insertion slots to a set number S, so that new
jobs are only inserted into the last S possible positions in the previously-
generated job sequences. In especially large numbers of jobs generated
with a similar distribution to the training data, sorting by relative due
time will put jobs that can be run later closer to the end, and they will
not need to be tried at the beginning, as that would just push the other
jobs to be tardy. Rather than trying those jobs at the beginning of the
list, time is saved by just inserting in the specified number of insertion
slots from the end.

The MILP formulation requires O(N?) variables and constraints, making exact so-
lutions impractical for N > 10 (e.g., N = 50 yields 5, 100 variables). In contrast,
the insertion heuristic reduces this to O(P - S - N). If both of these modifications
are implemented in the insertion algorithm, then at each iteration the number of
sequences to be calculated is P- .S, and the length of the sequence is S (since it is
not necessary to recalculate the job sequence before the first insertion point). It
follows that the algorithm’s execution time will be linear in the number of jobs.

TIterative selection

Instead of successively building up schedules by inserting new jobs, an alter-
native approach is based on appending new jobs to candidate partial schedules
sequentially by a trial-and-retain procedure. For example, suppose it is desired
to schedule 7 jobs [1,2,3,4,5,6,7], and suppose a preliminary ordering (deter-
mined by a simple heuristic, such as greedy) has the jobs in order [2,1,5,6, 3,7, 4].
Then for the first W = 4 jobs, (namely [2, 1, 5, 6] in this case) we may first exhaus-
tively evaluate the penalties and finish times for all W! = 24 possible orderings
of [2,1,5,6]. From this list, we may retain the Pareto optimal orderings (with
respect to penalty and finish times), and choose the initial job in each of these

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 21

Pareto optimal orderings. This will give us a list of single-element orderings. Sup-
pose for example, that 2 and 5 are the initial elements of Pareto optimal orderings
of [2,1,5,6]. We then evaluate finish times and penalties for all orderings of the
first five jobs in the preliminary list (namely 2,1,5,6,3) which begin with either
2 or 5. This requires evaluations for 2W! orderings. From these, we retain the
Pareto optimal orderings, and select the first 2 elements for all of these Pareto op-
timal orderings. With reference to our example, suppose [2,6,5,1, 3], [2,1,5,6, 3]
and [5,2,6,1,3] are Pareto optimal. Then we will retain the 2-element ordered
lists [2,6], [2,1], and [5, 2] as candidates for the first two jobs. At the next stage,
we evaluate penalties and finish times for all ordered sequences involving the jobs
[2,1,5,6,3,7] that begin with either [2, 6], [2, 1], or [5,2]: this involves calculating
3W! penalties and finish times. As before, we retain only the first three elements
of all Pareto optimal ordered sequences. Suppose for example that all Pareto
optimal sequences at this stage begin with [2,1,6]. Then at the next stage, we
only consider ordered sequences of length 7 that begin with [2, 1, 6].

As with iterative insertion, it is possible that the number of Pareto optimal
candidates will grow too large. In this case we may use the same strategy as
before: namely order the Pareto optimal candidates by completion time, and
choose K regularly-spaced job sequences from among the candidates. It follows
that the iterative selection algorithm also has two tuneable parameters, namely
the permutation window and the number of retained sequences, which we denote
as W and K, respectively.

2.3. Training, testing, and evaluation of heuristic methods.

2.3.1. Construction of scheduling scenarios for training and testing. In order to
test the heuristic algorithms and train the neural network described in Sec-
tion [2.2.2] it is necessary to generate a set of labeled instances for scheduling.
The instances are generated with randomized arrival, execution, delay, and due
times, as summarized in Table [T} which follows the notation of Section 2.1 The
due times d,,,n = 1,... N are generated as follows:

dy = an+ 2y + 1, + D), (2.10)
where the random variable D) is exponentially distributed with mean pp.. The
role of D! is to allow some margin for each job, so that job n can experience a
net delay of D! or less and still be completed on time. The parameter values
used are summarized in Table [Il All algorithms are implemented using Python
3.10, with the MILP solver from Scipy 1.12. The Spyder integrated development
environment (version 5.5.1) was used.

2.3.2. Training the neural network. The exact and heuristic single-machine algo-
rithms do not need training. Only the neural network model needs training, and
in this subsection we describe the training procedure.

12,000 single-machine cases with 6 jobs (N = 6) were generated according to
the distributions in Table [Il The optimal job orders for these single-machine
cases were computed using the exact MILP algorithm. These optimal orders
were used to create labels for each case as follows. Let o denote the permutation

22 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

Variable name Distribution | Parameter |
Arrival times a; ~ Exp(pa); an ~ an_1+ Exp(pa) \ =5 ‘
Execution times x, ~ Exp(uyx) \ x =5 ‘
Information delays zn ~ Exp(pz) | pz=5 |
Delay margins dl ~ Exp(up) ‘ wp = 10 ‘
Due times ay + xp + 2p + d, \ - |

TABLE 1. Random variables and parameters for random genera-
tion of arrival, execution, delay times, delay margin, and due times.
The index n labels jobs and runs from 1 to N.

corresponding to the correct ordering for a particular case, i.e. o[j] = k if the
j’'th job scheduled is job k. Then the label for that case is a vector L of length
N with entries in [0, 1] given by:
, k

L[j] = 1 (2.11)
so that the order of the entries in L matches the order of the jobs scheduled. The
metric used to evaluate the NN output is mean squared difference between the
label and the output.

To improve the training performance of the NN, first the starting structure is
adjusted. In initial testing, we tried layers with between 4N and 8N nodes, and
with linear, softmin, softmax, softplus, softsign, hyperbolic tangent, SELU, elu,
ReLU, and sigmoid activation functions. These functions were selected because of
their common use, although other activation functions exist. More limited testing
on the number of hidden layers suggested that one hidden layer with 4N nodes
and a linear activation has the best performance using the objective function
listed in[2.1.2] Parameter optimization methods tried include adadelta, adagrad,
adam, adamw, adamax, RMSProp, and Stochastic Gradient Descent (SGD). The
batch size was not optimized, and was set at 1. The mean squared error (MSE)
loss function was used to gauge performance. The number of epochs was adjusted
based on the loss curves, which leads to an epoch value of 250 where the curves
begin to plateau.

During training we plot the loss curves to assist in evaluating the number of
epochs. The loss curve is shown in Figure [2, which shows the flattening of the
loss curve at 250 epochs.

2.4. Performance Comparisons. In order to evaluate the relative performance
of the different algorithms, a number of tests were performed. All test scenarios
were generated using the distributions and parameters described in Table [I} All

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 23

Learning Curves for Default Model Structure

—— ftrain
040 \al
035
025 k

0.20 N

Mean Absalute Error

o 50 100 150 200 250

FIGURE 2. Learning loss curves for NN. The close match between
training and validation curves show that overfitting has not taken
place.

comparisons and training were run on a workstation with 32.0 GB of RAM and
an Intel i7-1360P CPU.

First we compared numerical algorithm performance to the exact MILP solu-
tion by applying MILP, NN, and insertion to the same 2000 scenarios with 6 and
8 jobs, and comparing the objective functions obtained by the three methods.
The number of jobs was limited because of the high runtimes of MILP.

Second, we compared the selection and insertion heuristic algorithms by ap-
plying both to the same 100 instances of 50 jobs. Both algorithms were run with
different values for the algorithm parameters: maximum number of kept permu-
tations and maximum number of insertion slots for the insertion algorithm; max-
imum number of kept permutations and selection window for selection. Several
graphs comparing performance and execution times for the different algorithm
variants were generated.

3. RESULTS

3.1. Comparison of numerical algorithms with exact MILP solution for
small scenarios. Figure [3| shows the distributions of objective functions ob-
tained using the NN, MILP, and insertion heuristic for 2000 instances of 8-job
scenarios with parameters given by Table [} For the insertion heuristic since the
number of jobs was limited all permutations were kept, and all insertions were
included. Clearly the insertion algorithm performance is almost identical to that
of the exact MILP, while the NN is far less optimal.

Figure[d displays the same information as Figure [3|for the 6-job case, but in the
form of cumulative distributions. Here we can see more clearly the close agree-
ment between the exact MILP solution and the heuristic solution. We conclude
that at least for few enough jobs, the insertion heuristic is usually giving us an
overall best solution.

3.2. Performance comparisons between insertion and selection algo-
rithms for larger cases.

24 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

3.2.1. Objective function comparisons. Figures [5| through show performance
comparisons between insertion and selection heuristic algorithms with different
parameter values, for 100 instances of 50 job scenarios generated using the distri-
butions described in Table[l The same 100 instances were run using all algorithm
variants, and the best prediction from all variants was stored.

Figure [5| shows the difference between the objective values for several inser-
tion algorithm variants with different values of P and S, compared to the best
objective obtained for each instance over all insertion and selection algorithms.
The figure shows mean and median differences for each variant, as well as the 5th
and 95th percentile values. Maximum number of kept permutations varies from
30 to 80, while maximum number of insertions varies from 10 to 35. Altogether
30 combinations of parameter values are used. Results show little change in all
performance measures when 50 or more permutations are kept (P > 50), and
when insertions are limited to the last 15 or more slots (S > 15). The mean val-
ues for the different algorithm variants are consistently higher than the medians,
indicated by right-skewed distributions.

Figure [0] parallels Figure [5] by showing means, medians, and 5th and 95th
percentile values for objective function differences from best obtained using the
selection algorithm variants with different values of K and W. The selection
algorithm with W = 7 is far better than W < 6. Indeed, comparison with
Figure [5| shows that W = 7 also beats all insertion variants. The number of
kept permutations K has little effect on algorithm performance, regardless of the
selection parameter.

Figure[7|shows the proportion of times each insertion algorithm variant matched
the overall best prediction. Each variant matches the best obtained objective
value for about 30 percent of instances regardless of the values of P and S. We
do see a slight dip in performance for S = 10 compared to S > 10, and an even
smaller dip in performane when P < 70. This is consistent with what was seen in
Figure [5] which shows that the distribution of errors for the insertion algorithm
is optimized for S > 10 and P > 60.

On the other hand, Figure |8 shows that big improvements in matching per-
formance are obtained when the select from parameter is increased. When the
select from parameter is 7, the overall best performance is matched at least 45
percent of the time across the range of kept permutation values. Selecting from
6 has similar performance to the insertion algorithms.

3.2.2. Pairwise comparisons of algorithm performance. Figures[9through[IT]show
scatter plots that provide detailed comparisons between pairs of algorithm vari-
ants. Each point in the scatter plot represents one particular scheduling scenario.
The x coordinate of the point represents the penalty achieved by one algorithm
variant, and the y coordinate of the point shows the penalty achieved on the same
scenario by a different algorithm variant.

Figure [compares insertion variants with S = 15, 20, 30 compared to the selec-
tion variants with W = 5,6, 7 with P = K = 50. The 3 variations of the insertion
heuristic give almost identical results (since points align closely with the 45 de-
gree line), while the selection algorithm improves significantly as W increases.

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 25

Selection with a window of 7 performs better than the insertion variations, but
insertion is better than the other two selection variations.

Figure [L0| compares insertion variants with S = 15 compared to the selection
variants with W = 5 with P = 50,60,70 and K = 50,60,70. The 3 variations
of the insertion heuristic give almost identical results (since points align closely
with the 45 degree line), while the selection algorithm improves significantly as
W increases. Selection with a window of 7 performs better than the insertion
variations, but insertion is better than the other two selection variations. While
there is little variation over the kept permutations for either algorithm, inserting
in the last 15 is consistently better than selection with a window of 5, especially
with larger objective values.

Figure [L1| compares insertion variants with S = 15 compared to the selection
variants with W = 7 with P = 50,60,70 and K = 50,60,70. The 3 variations
of the insertion heuristic give almost identical results (since points align closely
with the 45 degree line), while the selection algorithm improves significantly as
W increases. Selection with a window of 7 performs better than the insertion
variations, but insertion is better than the other two selection variations. While
there is little variation over the kept permutations for either algorithm, inserting
in the last 15 is consistently worse than the selection algorithm with a window of
7, especially with smaller objective values.

3.2.3. Runtime comparisons for insertion and selection. Figure shows run-
times for the insertion algorithm using different values for the number of kept
permutations P and number of insertion slots S. The runtime is linear P for
fixed S, with slope increasing with S. It appears that runtime is also linear in S
for fixed P. This linearity in parameters implies that implementations with large
values of P and S are feasible. However, Figure [5| indicates that large values are
not necessary for good performance.

Figure [13] shows the runtime for the selection algorithm with different values
for permutation window W and number of kept permutations K. The runtime is
relatively constant for K > 30, whereas the runtime increases exponentially with
W. Together with Figure[0], these results indicate that improvements in selection
algorithm performance can be achieved by increasing W, but at relatively high
computation cost.

4. CONCLUSIONS

We have shown that the insertion and selection algorithms perform nearly opti-
mally when the number of jobs is small, and offer a substantial improvement over
dispatch rules as the number of jobs increases. For both algorithms, parameters
can be adjusted to affect tradeoffs between execution time and objective function
performance, although with insertion the performance improvements that can be
achieved by parameter adjustment are limited. In head-to-head comparisons be-
tween insertion and selection, selection and insertion algorithms have comparable
accuracy when comparing variants with comparable runtime. For example, The
insertion algorithm with P = 50 and S = 15 has comparable performance and
runtime with the selection algorithm with W = 6 and K = 30. However, the

26 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

performance of the insertion algorithm is limited and cannot be improved by fur-
ther increasing the selection window and kept permutations. On the other hand,
the selection algorithm can be further improved by increasing the permutation
window—but at high cost in execution time.

Although we did not do an extensive study of possible neural network archi-
tectures, the results from our simple architecture suggest that neural networks
may not be well suited to this application. Preliminary investigations with much
larger networks also showed very poor performance. It is reasonable that neural
networks would have difficulty solving scheduling problems, due to their dis-
continuous nature. Neural networks training algorithms presuppose a continuous
dependence of the loss function on inputs, so that gradient descent can be used to
obtain incremental improvements. However, in scheduling problems the penalty is
a discontinuous function of the inputs, so gradient-based parameter optimization
cannot be expected to work.

Projected future work includes more extensive benchmarking. In the literature,
other methods are suggested to generate scenarios [17], which may be used to test
the algorithms over a wider variety of conditions.

The algorithms may also be further optimized. Further optimization can target
reducing execution time and/or improving performance.

e As far as reducing execution time, not all of the speedup features for in-
sertion and selection described in Section have been implemented.
There are other possibilities for speedup as well. For instance, in the selec-
tion algorithm there may be a way of selectively generating permutations,
rather than generating all permutations in the permutation window.

e Performance may perhaps be improved by combining the two algorithms.
It is possible, for instance, that applying selection on the schedule gen-
erated by insertion may have the effect of ”fine tuning”, since selection
performs a local reshuffling.

Finally, the two algorithms may be generalized and applied to other problems,
such as the permutation flowshop problem. This research is currently in progress.

5. DECLARATIONS

Ethics approval and consent to participate. Not applicable
Consent for publication. Not applicable

Availability of data and materials. The code used in this paper to generate
data and to apply and compare scheduling algorithms is stored in GitHub at:
https://github.com/christhron/Flowshop_Iterative_Heuristics.

Competing interests. The authors declare no competing interests.

Funding. No funding was received for conducting this study.

https://github.com/christhron/Flowshop_Iterative_Heuristics

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 27

Authors’ contributions. Conceptualization: OBO, CT,MA; Formal anal-
ysis: MG, GS, RW, CT; Investigation: MG, GS, CT; Methodology: MG,
GS, CT; Software: MG, GS,CT; Supervision: MA, CT; Validation: MG,
GS, CT; Visualization: MG, GS,CT; Writing — original draft: MG, OBO,
RW, CT; Writing — review & editing: MG,CT ,MA.

Acknowledgements. We wish to thank the anonymous reviewers for valuable
suggestions that greatly improved the clarity of the paper.

6. FIGURES

Objective Function Values for singleMachineModel_8N h5

1500 mm MILP
[I

E 1250 Heuristic
8 1000
£
E:il
= 750
o
E 500
=

250 J

0 Leallal J |J i | PR

00 B899 1797 2696 3504 4493 5392 620.0
Objective Value (Bin Size=25)

Dbd'ecti\.re Function Differences for singleMachineModel 8N.h5
2000

mm NN to MILP
B Hewristic to MILP
1500

1000

Num. Observations

500

0 = -_II_I B moww. ; . i
0 100 200 300 400 500 600
Objective Difference (Bin Size=25)

FIGURE 3. Distributions of objective function differences (NN mi-
nus MILP and insertion heuristic minus MILP), applied to 2000
instances of 8 jobs with distributions according to Table [I}

28 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

Cumulative distributions of objective functions for
single-machine algorithms, 6-job scenarios

10 A1 [
0.8)
wvi /
n f
(=)
« 06 7
o
c
=
=
3 04 |
E — J
o
0.2 —— MILP
NN
0.0 - = Heuristic
0 100 200 300 400 500 600

Objective Value

FiGurE 4. Cumulative distributions of objective functions for
MILP, NN and insertion heuristic single-machine algorithms, ap-
plied to 2000 instances of 8 jobs with distributions according to
Table [l

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS

Objective Difference from Best

29

Average Differance vs Number of Kept Permutations for 100 instances of 50 jobs with Error Bars (5th to 95th Percentile)

350 4

300 4

250 4

200 4

150 4

100 A

=&~ Insert in the last 10

Insert in the last 15

&~ Insert in the last 20

4~ Insert in the last 30

_ —8— Insert in the last 35

30 4an 50) 70 80
Kept Permutations

FIGURE 5. Performance comparison for 30 insertion algorithm
variants using different parameter values (number of kept permuta-
tions P and number of insertion slots S), for 100 50-job scenarios.
The number of insertion slots (S5) is listed on the z axis, while
different values of P correspond to the different series shown in
the legend. The y axis shows the difference between the objective
function obtained by the algorithm and the lowest overall objective
function obtained from all 30 insertion algorithm variants shown in
this figure and the 18 different selection algorithm variants shown
in Figure [6] for each 50-job scenario. Error bars show the 5th and
95th percentiles for each algorithm variant. Medians for each al-
gorithm variant are plotted with circles and are joined with lines,
while means are plotted with x’s. Variants with S > 10 and P > 60
have similar performance statistics.

30 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

Average Differance vs Number of Kept Permutations for 100 instances of 50 jobs with Error Bars (5th to 95th Percentile)

_ —#— Select from 5
_ 4~ Select from &
-8 Select from 7
500 - [T
- 400 4
Wi
i
5]
= —
g — - —
L ¥ —
£ 300 4
u
[
S
=]
o
=
@ 200
)
[=]
100 4
x
¥ f x * 4
M a — —] %
- G e — P N
0 -
T T T T T T
30 40 50 B0 0 80

Kept Permutations

F1GURE 6. Comparison of 5th to 95th percentiles of objective mi-
nus best values for the selection algorithm run with different pa-
rameter values (number of kept permutations K and permutation
window W) for 100 50-job scenarios. Best overall values were taken
as the lowest objective function obtained from all insertion and se-
lection algorithm variants for the corresponding 50-job scenario.
Medians are plotted with dots and connected by lines, and means
are plotted with x’s. Increasing W produces notable reductions in
error, while increasing K above 30 has little effect.

LAGJMA-2021/01

Proportion Matching objHeurMin

Propertion Matching objHeurMin

05

Proportion of Matches with Minimum Objective Value

UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS

31

0.4 4

0.3

02

0l

0.0 -

05

30 40 50 60 70

Number of Kept Permutations

Insert in the last 10
Insert in the last 15
Insert in the last 20
Insert in the last 30
Insert in the last 35

FIGURE 7. Proportion that each insertion algorithm attains the
minimum penalty out of all obtained values across 50 job instances.

The proportion evens out at around 0.3.

Propartion of Matches with Minimum Qbjective Value

50 60
Number of Kept Permutations

Select from 3
Select from 4
Select from 5
Select from &
Select from 7

FIGURE 8. Proportion that each selection algorithm variant at-
tains the minimum penalty out of all obtained values across 50 job
instances. Selection continues to improve with larger windows, and

reaches almost 0.5 with W = 7.

32 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

Insert in the last 15
with 50 kept permutations

Insert in the last 20
with 50 kept permutations

Insert in the last 30
with 50 kept permutations

Select from 5
with 50 kept permutations

Select from &
with 50 kept permutations

Select from 7
with 50 kept permutations

2500

[~
=
(=]
=

o]
E

1000

]
=

=

2500

2000 4

1500 4

1000 4

500

2500 4

2000

1500

1000 4

500 4

3000

2000 4

1000

3000 4
2500
2000
1500 4
1000 4

500

2500
2000 4
1500 4
1000

500 4

FIGURE 9. Scatter plots comparing penalties obtained from dif-
ferent insertion and selection algorithms. Pair plots for insertion
algorithm variants with S = 15,20,30 and P = 50 and selection
algorithm variants with W = 5,6,7 and K = 50.

. .
Ll - £ . , . J‘
s r's ! . 4 . S .
, , 5 /.
Vi Vi S e o
; . ¥, .);/ .
b o 0
. _ig” .
y L] ..' L]
. . 2
-
.
/ / olp @ »
T T T T T T T T T T T T T T
s s A - A
P P A A0 -
¥ # 4 s #
/ ’{ o T e o 7% e . Fu
‘1. g V'
P o _ia"® 1 - “' L) 3’
¥ e “* . %
s s o, | $ae
- . o
. iy »
4 e | =
ig a!
/ / & i
T T T T T T T T T T T T T T
- - 7 . S A
Py /e SN e
’ ’ Fl ’ ’
Vs Vg S . . A
s A 4 s
g o fa® ., ‘ﬁ
y L] he L]
py L] . 2
.
/ / | !»? 0 .
1 1#
T T T T T T T T T T T T T T T
L L . .
L] - L] . L . .’I L -
. -
- - S L
L . s LR
. - . - . s . -~
Ly . . 7 o -
0% *.0% el ".9"
- - - ’ - ’ L4
% % % . @ ¥
- L] - L 1 - .’
T T T T T T T T T | T T T T T T T
. J
] Se] S . S /'o.. . .’,”
s - - # #
4 - e ’
. . .) o,/
. - - # "
-~ # e ’ e
. . % . % P f e
o o o o o H . T o X
- . * . 5] L] ’? ., LT
o§ *s og ‘s 05 *s 1 o q
i i .] .
L T T T T T T T T T L T T T T
L - L)’ L
! e
r » ¥ S o
- . - - i
. . . I . P
r] A P]]
F ‘1
N) 1 o 5 o %8 1 o
e e A . g L4 .
. 1 o .] .
. . . 5 .
T - T T T - T T T - T T L I. T T T L T T T T
o 1000 2000 o 1000 2000 0 1000 2000 [1] 1000 2000 3000 1] 1000 2000 3000 0 1000 2000
Insert in the last 15 Insert in the last 20 Insert in the last 30 Select from 5 Select from & Select from 7
with 50 kept permutations with 50 kept permutations with 50 kept permutations with 50 kept permutations with 50 kept permutations with 50 kept permutations

LAGJMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 33

2500 I 1 - s s s

¥ o / . / . / .
g Lo ’..' ;/ . ;" . .‘" .
2 2000 o Vs Ao Ao A
o 4 . . L] . 7 . L .
#72 00(' (74 Fe® Fa® s
= E 1500 1 1 1 ot A AL ,.’!s
] g ‘?‘ /f‘ ¥ . " . .
1* 2 F gl 0
= ; =% e
BZ o0 Vs 1 3 f £ f?
‘;‘ . fa 1
0 o 1
" -,: ./‘ /' & /' & ,/ o
S * 4 - - ’
5 2000 S 1 1 S s o s o
n g e o Vs . /. . K .
BE 1500 |) 1 1 * P AR S8
E » . o
uE . e e % g o e ota o
E=]]] o " 5
= o 1000 .
i g rd
o3 . . .
Eg 500 f}:] | ﬁ ﬁ lég
£ # ¢ -4 e .
=
044 1 1

500 1 s 1 1 ’ ’ ’
2000 | 1 PO S S S

= 2/ ' R j{:r ket K7y

1000 4

Insert in the last 15
with 70 kept permutations

. -
L] - L - el
£ 3000 1 . o 0 . " s ot
2 - -
= # #
. R . ’,"' . . R . (," ’a’ . ,"
£ E 2000 0s o g w o g - F4 -4
& L Ll e ¥ o o of®
95 &< o &< ’ ’
-]
RIS AU T A S f s Ve
5l ?] e
=
01 T T T L T T T L T T T T T T T T T T T
L] - L .’ .I
g 3000 . * 1 o U . * ’J' 0’1‘
= e ,
" e e
EE 2000 LT P 1 e w7 . o oo »
gi M o e . o,/.
poi=1 o g7 .y o o . .
2% o0l @a : | ég J #‘i' . . .
h=
2 ' »,]
0]
T T T T T T T T T T T T T T T T T
L] - L ’ ’
w3000 - | - | - /.I. /.I.
=} . . . [[
8 . . P - s
- - , - . L ,'{ -
£ E 20001 oe ¢ w 1 we 7 ' Y
EE *e * e Py Fa o4
8§ 300 o5 35 : +
gf 1000 E‘ . 1 #‘ . 1 ﬁ?‘- .
= - - (]
=
0 T T T T T T T T T T T T T T T T T
o 1000 2000 o 1000 2000 o 1000 2000 o 1000 2000 3000 o 1000 2000 3000 o 1000 2000 3000
Insert in the last 15 Insert in the last 15 Insert in the last 15 Select from 5 Select from 5 Select from 5

with 50 kept permutations with 60 kept permutations with 70 kept permutations with 50 kept permutations with 60 kept permutations with 70 kept permutations

FIGURE 10. Scatter plots comparing penalties obtained from dif-
ferent insertion and selection algorithms. Pair plots for insertion
algorithm variants with S = 15 and P = 50,60, 70 and selection
algorithm variants with W =5 and K = 50, 60, 70.

34 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

2500 1 1 . - p P
g -~ r.’ ,’J . . /’ L
£ 2000 1 1 ‘ 1
A . 4 . ’/ . ‘,l . ," .
w3 . . # ’
= E 1500 | 1 < | o . .
2 # A " "o
EE 1000 - 1)g:‘ 1 Y 5&"
e= ; B ®
27 soo 1 f 1 .7 ﬁ
H . P
01 1+ : 4
. P
" o4 4 PO R
u " # #
[=} 4 ’ 4 4 /
n = 2000 »° r ,’(l
ol | ." " ?’
% E 1500 1 1
- E o, ,gf oo
£2 . s
=& 1000 E E
e * -
b=
EZ oo / 1 1 .
; 4 4

2500 4 & I2 1 4 A4
&2 I.l’ o ’," . f/ -
S 1 1 1 1
n g 2000 e . #. A
#3 [-’ .’ o/
& E 1500 - . e, 1 ®e 1 ® e "
v . o " o %
-
Eg 1000 1 4) "&g;) ‘ﬁi . o
€ oy ® .
2R
B2y | 4 | # #
= o]] F; ¥
T T T T T T T T T T T T
“ L] L] L] /.’
5 2500 - 7 1 o > s
o e /” . f" ‘/
S 2000 4 W 1 ., 1 S/
"E‘ E '/‘ a /a‘ -
£ & 1500 o e g g .
k] E 'r’o . ’,’.o
o & 1000 . . 1 1 o e)
ag #ﬁgﬁ? . ¢ ﬁrﬁ? * .
= 5004 . 1 1 f&@.
o] j j
T T T T T T T 7 T T T

2500 1 * . > s
2000 | . 1 % 1 % '
1500 e 1 1 s o
1000 & ”‘A
7 .'%i“ L 1 L 11 >

Select from 7

with 60 kept permutations
z
(=] =)
-~
L]
o
L
)
*1%
%
B
]
l. :\
L]
\\

. . . s s

W ’, ,

5 2500 1 . ¥ L] = . » . '/ . ’4‘

5 e 2 L S S
5 2000 rd 1 » 1 F b 4 i
EE g -~ Ve . ‘
£ 8 1500 1 Vo 1 g 1 A & d
gy # . P - o 0
o] a* & ° -
£ 2 1000 4lE.... ., 1 .;,ﬁd. K]] LA ‘
we ~ L] L]

=

'~ 5001 ,«ﬁf - ﬁ j f

ES

5 i

049 15 1g®
T T T T T T T T T T T T T T T
o 1000 2000 o 1000 2000 o 1000 2000 o 1000 2000 o 1000 2000 o 1000 2000
Insert in the last 15 Insert in the last 15 Insert in the last 15 Select from 7 Select from 7 Select from 7
with 50 kept permutations with 60 kept permutations with 70 kept permutations with 50 kept permutations with 60 kept permutations with 70 kept permutations

FIGURE 11. Scatter plots comparing penalties obtained from dif-
ferent insertion and selection algorithms. Pair plots for insertion
algorithm variants with S = 15 and P = 50,60, 70 and selection
algorithm variants with W =7 and K = 50, 60, 70.

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 35

Average Runtimes vs Number of Kept Permutations for 100 instances of 50 jobs with Error Bars (5th to 95th Percentile)

=&~ Insert in the last 10
Insert in the last 15

| =% Insertin the last 20
$~ Insert in the last 30
—%— Insert in the last 35

Time {Seconds)

30 40 50 E0 70 80
Kept Permutations

FIGURE 12. Runtime comparisons for insertion algorithm variants
with kept permutations P = 30,...80 and S = 10,...35. The
median runtimes for each variant are plotted with circles, means
are plotted with x’s. and error bars indicate the 5th and 95th
percentiles. The runtime is linear in P for fixed S, with slope that
increases as S increases.

36 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

~#~ Select from 5 4~ Selectfrom & =@ Select from 7
Average Runtimes vs Number of Kept Permutations for 100 instances of 50 jobs with Error Bars (5th to 95th Percentile)

10° |

10t

Time {Seconds)

10°

T T T T
30 40 50 60 70 80
Kept Permutations

FIGURE 13. Runtime comparisons for selection algorithm variants
with kept permutations K = 30,...80 and permutation window
size W = 5,6,7. The median runtimes for each variant are plotted
with circles, means are plotted with x’s, and error bars indicate the
5th and 95th percentiles. The runtime is to be mostly unaffected

by the number of kept permutations, but increases exponentially
with the window size.

LAGIMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 37

[1]

REFERENCES

Hafewa Bargaoui, Olfa Belkahla Driss, and Khaled Ghédira. Minimizing makespan in multi-
factory flow shop problem using a chemical reaction metaheuristic. In 2016 IEEE Congress
on Evolutionary Computation (CEC), pages 2919-2926. IEEE, 2016.

Amar Oukil and Ahmed El-Bouri. Ranking dispatching rules in multi-objective dynamic
flow shop scheduling: a multi-faceted perspective. International Journal of Production
Research, 59(2):388-411, 2021.

Harwin Kurniawan, Tanika D Sofianti, Aditya Tirta Pratama, and Prianggada Indra
Tanaya. Optimizing production scheduling using genetic algorithm in textile factory. Jour-
nal of System and Management Sciences, 4(4):27-44, 2014.

MK Marichelvam and M Geetha. Solving tri-objective multistage hybrid flow shop sched-
uling problems using a discrete firefly algorithm. International Journal of Intelligent En-
gineering Informatics, 2(4):284-303, 2014.

TS Benthem. Solving a multi-objective hybrid flow shop scheduling problem with practical
constraints from the food industry. Master’s thesis, University of Twente, 2021.

Shuai Chen, Quan-Ke Pan, Liang Gao, and Hong-yan Sang. A population-based iterated
greedy algorithm to minimize total flowtime for the distributed blocking flowshop sched-
uling problem. Engineering Applications of Artificial Intelligence, 104:104375, 2021.
Heiner Ackermann, Sandy Heydrich, and Christian Weif. Analyzing and optimizing the
throughput of a pharmaceutical production process. In Operations Research Proceedings
2019, pages 591-597. Springer, 2020.

Tanzila Azad and Asif Ahmed Sarja. A comparative analysis of heuristic metaheuristic
and exact approach to minimize make span of permutation flow shop scheduling. American
Journal of Industrial Engineering, 8(1):1-8, 2021.

Eva Vallada, Rubén Ruiz, and Gerardo Minella. Minimising total tardiness in the m-
machine flowshop problem: A review and evaluation of heuristics and metaheuristics.
Computers € Operations Research, 35(4):1350-1373, 2008.

Eric Taillard. Benchmarks for basic scheduling problems. Furopean Journal of Operational
Research, 64(2):278-285, 1993.

Eva Vallada, Rubén Ruiz, and Jose M Framinan. New hard benchmark for flowshop
scheduling problems minimising makespan. European Journal of Operational Research,
240(3):666-677, 2015.

Michael Pinedo and Khosrow Hadavi. Scheduling: Theory, algorithms and systems devel-
opment. In Wolfgang Gaul, Achim Bachem, Wilhelm Habenicht, Wolfgang Runge, and
Werner W. Stahl, editors, Operations Research Proceedings 1991, volume 1991, pages 35—
42. Springer, Berlin, Heidelberg, 1992.

Steven Nahmias and Tava Olsen. Production and Operations Analysis, chapter 9, page 490.
Waveland Press, 7th edition, 2015.

Cecilia E Nugraheni, Luciana Abednego, and Maria Widyarini. A combination of palmer
algorithm and gupta algorithm for scheduling problem in apparel industry. International
Journal of Fuzzy Logic Systems, 11(1):1-12, 2021.

Christophe Sauvey and Nathalie Sauer. Two neh heuristic improvements for flowshop
scheduling problem with makespan criterion. Algorithms, 13(5):112, 2020.

Yeong-Dae Kim. Heuristics for flowshop scheduling problems minimizing mean tardiness.
Journal of the Operational Research Society, 44(1):19-28, 1993.

Victor Fernandez-Viagas and Jose M Framinan. NEH-based heuristics for the permuta-
tion flowshop scheduling problem to minimise total tardiness. Computers & Operations
Research, 60:27-36, 2015.

38 M. GRADWOHL, G. SEWA, O. B. OGHOJAFOR, R. WILOUWOU, M. ADAMU, C. THRON

MATTHEW GRADWOHL
DEPARTMENT OF SCIENCE AND MATHEMATICS, TEXAS A&M UNIVERSITY-CENTRAL TEXAS,
KiLLEeN TX USA

GUIDIO SEWA
INSTITUT DE MATHEMATIQUES ET DE SCIENCES PHYSIQUES, PORTO NOVO, BENIN REPUB-
LIC.

OKE BLESSING OGHOJAFOR
DEPARTMENT OF STATISTICS, UNIVERSITY OF LAGOS. NIGERIA
Email address: oghojaforokerogheneblessing@gmail.com

RicHARD WILOUWOU
UNIVERSITY OF SOUTH BRITTANY, LORIENT FRANCE.

MUMINU ADAMU
DEPARTMENT OF STATISTICS, UNIVERSITY OF LAGOS. NIGERIA
Email address: madamu@unilag.edu.ng

CHRISTOPHER THRON*
DEPARTMENT OF SCIENCE AND MATHEMATICS, TEXAS A&M UNIVERSITY-CENTRAL TEXAS,
KiLLeeN TX USA

Email address: thron@tamuct.edu

	1. Background and motivation
	1.1. The flowshop problem: an example of a scheduling problem
	1.2. Common variants of the single-machine flowshop problem

	2. Methods
	2.1. Mathematical specification of flowshop model
	2.2. Algorithms for solution and approximate solution
	2.3. Training, testing, and evaluation of heuristic methods
	2.4. Performance Comparisons

	3. Results
	3.1. Comparison of numerical algorithms with exact MILP solution for small scenarios
	3.2. Performance comparisons between insertion and selection algorithms for larger cases

	4. Conclusions
	5. DECLARATIONS
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements

	6. Figures
	References

