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A SEMI-ANALYTICAL METHOD FOR SOLVING FRACTIONAL ORDER 

GENERALIZED BURGERS- HUXLEY EQUATION WITH A REFINED INITIAL 

GUESS. 

RAZAQ ADEKOLA ODERINU* AND SAMSON ADEKUNLE AJIBADE 

ABSTRACT: In this paper, a refined initial guess was incorporated into the 

Adomian Decomposition Method (ADM) in order to obtain an approximate 

solution to the classical order and fractional order Generalized Burgers-Huxley 

equations (GBHE). The first iteration was obtained using the refined initial guess 

and all other iterations are obtained using the ADM. The solutions obtained were 

computed as an infinite series with a fast convergence to the exact solution at 

classical order. The dependability and efficacy of the procedure are 

demonstrated by the supplied graph and the results. 

 

 

1. INTRODUCTION 

Fractional calculus is a crucial and useful extension of the ordinary derivatives of integer orders 

and integrals, because the current solution is not only influenced by the preceding one but also by 

the entire history of the solution. Numerous man-made and natural phenomena have characteristics 

that classical order calculus is unable to sufficiently explain. A more realistic foundation for 

simulating these intricate phenomena, like fractal geometry, anomalous diffusion, and 

viscoelasticity is offered by fractional calculus. Fractional calculus is important in memory effect, 

signal processing, control systems, fractal phenomenon, optimization and finance. It is essential to 

solve fractional calculus because it provides a more precise and adaptable mathematical 

framework for explaining complex systems and phenomena that display long-range interactions, 

memory effects, and non-local behavior. It is an important instrument for scientific study and 

engineering practice because of its wide range of applications. 

Literature Review. A significant obstacle with this problem type is the difficulty in finding a 

solution, particularly when it is nonlinear. Several numerical methods have been developed to 

solve this set of equations, including the homotopy analysis technique by [14], the homotopy 

perturbation method by [11], the ADM by [9], the Aboodh transformation-based homotopy 

http://lagjma.edu.ng/
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pertubation method by [6], kamal Adomian decomposition method by [8], laplace Adomian 

decomposition method by [10], Mohand variational transformation method by [5].  

Alaje et al. [2] developed the concept of modified initial guess in the Homotopy perturbation 

method solely to solve the generalized fractional order korteweg- de-Vries (kdV) problems. This 

study aims to incorporate the initial guess proposed by [2] into the Adomian decomposition 

method to address fractional order Generalized Burgers-Huxley equations. 

 

2. MATERIALS AND METHODS 

Definition 2.1. A real function ( )t , 0t  is said to be in space C , R  if there exist a real 

number m  such that ( ) )(ttt m =  where ( ) ),0( Ct  and it is said to be in the space 
nC  if 

and only if , Cn  Nn . 

Definition 2.2. The Reimann-Liouville fractional Integration of order 0 for a real positive 

function , Cn  ,1− 0t is defined by [3] as 
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Where ( )t  is a function of t, ( )x  is a function of x ,  is the order of the fractional integral, )(

is a Gamma function of  , I is called the fractional integral operator. 

The following properties hold for fractional integral operator: 
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Let 𝛼 be any positive real number and n be a natural number such that nn − 1 . Let )(tf  be 

a continuous function in the interval  Ta, , aT  . Then the Reimann-Liouville derivative of order 

𝛼 is given by [6] 
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Here nth derivative is operated outside the integral sign. 

Definition 2.3. The Caputo fractional derivative of a positive real function , Cn  is expressed 

as  
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  ,1 nn −  Nn .        (7) 

Where  D  is the Caputo derivative, n  is a natural number, )(xn is a real positive function of 

order n , is the order of Caputo derivative. The fractional integration of Caputo derivative for

,1 nn −  Nn , ,1

nn C− 1−  is  
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( )t  is a function of t, )(xk is a real positive function of order k , is the order of the fractional 

integral, I is called the fractional integral operator, D  is the Caputo derivative[3]. 

2.4.   Refined Initial Guess Adomian Decomposition Method (RIG-ADM) 

 The general form of ADM [12] is given as: 
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Where )),(( txuN  is a Nonlinear function, )),(( txuR  is the remaining linear function, )(xg  is the 

source term 
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represents the Caputo derivative , 10     (10) 

Applying the integral operator of 
tI  to both sides of Eq. (9) 
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Substituting Eq. (12) into Eq. (11) gives; 
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The nonlinear term 
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Where nA is the Adomian polynomial with the general formula: 
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The first few terms are:  

When n=0  

 ( )00A UN= .        (17) 

When n=1 
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Substituting Eq. (14) and (15) into Eq. (13) gives: 

..),),(),(),(),((I

...)()()0,(),(

3210t

210

++++−

+++−+=

txutxutxutxuR

AAAIxgIxutxu tt





     (21)  

Comparing Eq. (21) and Eq. (14) 
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The modified initial guess proposed by [2] is given as; 
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By comparing Eq. (24) to Eq. (14), 
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These sui ' , ni ,...3,2,1=  are then calculated depending on the problem under consideration which 

are then sum up as the solution of the given problem.  

 

3.   RESULTS 

Considering the generalized form of fractional order Burger-Huxley equation given as: 
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The exact solution of the classical order when 1=  of equation (26) was obtained by [15] as
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The classical order of equation (26) has been solved by [4] using the Adomian decomposition 

method. The RIG-ADM will now be used to solve the fractional order of the same equation due to 

the non-local importance of fractional differential equations. Burger-Huxley models the interaction 

between mechanisms, convection effects and diffusion transport [13]. Where ),( txu is the 

population density,  is the species carrying capacity,  is the speed of advection and  is the 

nonlinear source,   is a constant parameter.  

By expanding the right hand side of equation (26), 
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Substituting Eq. (31a-31e) into Eq. (28) when 0=t gives,    
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From Eq. (12)  
 ttxu 11 ),( = , 

Substituting Eq. (32) into Eq. (12) gives, 
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Other iterations can now be obtained using Adomian decomposition method 

The nonlinear terms of equation (28) are 

x

txu
txu n

n



=

),(
),(A n


,           (34a) 

 1

n ),(B += txun ,           (34b) 

 12

n ),(C += txun           (34c)
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4.  DISCUSSION 

The refined initial guess was incorporated into the Adomian decomposition scheme to solve the 

generalized Burger-Huxley equation using Maple software. The first iteration was obtained using 

the refined initial guess proposed by [2] and other iterations were obtained using the Adomian 

decomposition method. The iterative solutions were in a series form whose closed-form converges 

to the exact solution. Table I shows the errors obtained when the approximate solutions of the first 

three iterations of the Generalized Burger Huxley Equation (GBHE) obtained by RIG-ADM when 

01.0,2,1 ====   was compared with the exact solutions. The Mean Absolute Error 

(MAE) calculated was 41065.1 −  which was found to be the same as [4]. Table II shows the 

approximate solution of the fractional-order GBHE at different fractional order when 

01.0,2,1 ====   and it was observed that as the fractional order increases the 

approximate solution increases and tends to the classical solution. Table III shows the absolute 

errors obtained when the approximate solutions of the second, third and fourth iterations of the 

GBHE obtained by RIG-ADM when 7.0,1,2,0 ====   were compared with the exact 

solution given by [1]. It was observed that the MAE of the first four iterations calculated is 
5103.3 − which is the same as [1]. When 2,0 ==   this reduces the GBHE to Generalized 

Huxley Equation (GHE) and it was observed that the MAE of ),(),(),( 432 txutxutxu  , this 

then implies that the accuracy of the method depends on the number of iterations. Table IV shows 

the approximate solution of the first four iteration of different fractional-order Huxley equation 

when 7.0,1,2,0 ====   and it was observed that as the fractional order increases the value 

obtained tends to the classical solution at different values of t . 

Figure 1 shows the agreement between the 3D plot of RIG-ADM and exact of GHE when 

7.0,1,2,0 ====   the figure shows the interaction between the propagation of neural 

pulses, the motion of liquid crystal walls and the dynamic of nerve fibres. Figure 2 shows the 3D 

plot of RIG-ADM of the GHE when 7.0,1,2,0 ====   the figure shows the interaction 

between the propagation of neural pulses, the motion of liquid crystal walls and the dynamic of 

nerve fibres. 

 

Table I. Results of the first three iterations ),( txu  of the classical Generalized Burger-Huxley 

equation when 1,01.0,2,1 =====  . 

  x    t       Exact      Numerical Absolute error  

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

0.0707459068192873 

0.0707657782238068 

0.0707856440150640 

0.0708055041852216 

0.0708253587264504 

0.0706907399638226 

0.0706554324552584 

0.0706201073273971 

0.0705847646239787 

0.0705494043887428 

5.516685E-05 

1.1034577E-04 

1.6553669E-04 

2.2073956E-04 

2.7595434E-04 

0.3 

 

0.1 

0.2 

0.3 

0.4 

0.5 

0.0707765915255728 

0.0707964542583346 

0.0708163113657345 

0.0708361628399472 

0.0708560086731549 

0.0707214486683211 

0.0706861564601093 

0.0706508465943210 

0.0706155191146305 

0.0705801740647122 

5.514286E-05 

1.1029779E-04 

1.6546477E-04 

2.2064372E-04 

2.7583461E-04 

MAE         1.65-04 
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Table II. Results of the first three iterations ),( txu  of the Generalized Burger-Huxley equation 

when 01.0,2,1 ====   at different fractional order.   

  x    t        25.0=        5.0=       75.0=   

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

0.0705065148685067 

0.0704648407844771 

0.0704368727317888 

0.0704152240549829 

0.0703973174192068 

0.0705999619653633 

0.0705476400617371 

0.0705074514210270 

0.0704735435115939 

0.0704436493930238 

0.0706577231172378 

0.0706111040273507 

0.0705702020566559 

0.0705326128971685 

0.0704973049742888 

0.3 

 

0.1 

0.2 

0.3 

0.4 

0.5 

0.0705373021430817 

0.0704956455157502 

0.0704676891120356 

0.0704460494154736 

0.0704281501835144 

0.0706307097483701 

0.0705784101596525 

0.0705382385517081 

0.0705043449405901 

0.0704744633727386 

0.0706884461075625 

0.0706418471109080 

0.0706009626856422 

0.0705633895815824 

0.0705280966796442 

 

 

Table III. Results of the absolute error of Generalized Huxley equation at second, third and fourth 

iterations when 1,7.0,1,2,0 =====  .   

  x   t   ),(2 txu     ),(3 txu       ),(4 txu   

-5 

 

 

-3 

0.3 

0.7 

 1 

0.3 

0.7 

0.0000532641 

0.0006315957 

0.0017507672 

0.0000975884 

0.0012427897 

0.000002746 

0.000079942 

0.000323676 

0.000001419 

0.000021079 

0.000000065 

0.000004767 

0.000029134 

0.000000629 

0.000039619 

 

-1 

 

 

MAE 

 1 

0.3 

0.7 

 1 

 

0.0035952650 

0. 000153432 

0.0016042828 

0.0039590272 

   0.001454   

0.000033425 

0.000020390 

0.000603898 

0.002478818 

   0.000396 

0.000219377 

0.000000327 

0.000009177 

0.000001848 

  0.000033 

 

 

Table IV. Results of the first four iterations of Generalized Huxley equation at different fractional 

order when 7.0,1,2,0 ====  . 

  x   t      25.0=       5.0=       75.0=  

-5 

 

 

-3 

0.3 

0.7 

 1 

0.3 

0.7 

0.01283922699 

0.01374792465 

0.01492244025 

0.04600734938 

0.04530583812 

0.01283117497 

0.01112431781 

0.01110400506 

0.04844961611 

0.04000883032 

0.01415141133 

0.01056777381 

0.00907629687 

0.05785780517 

0.04008262693 

 

-1 

 

 

 1 

0.3 

0.7 

 1 

0.04646287702 

0.14037733048 

0.12252861274 

0.11358418601 

0.03705522959 

0.15804066800 

0.12746556140 

0.11119979799 

0.03322474263 

0.17570580636 

0.13523389124 

0.11295581138 
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  (a)           (b) 

Fig 1: exact solution (a) and numerical solution (b) of equation (26) respectively when 

1,7.0,1,2,0 =====  . 

  

              

(c)            (d) 

 

 

                  (e) 

Fig 2: Numerical solution of equation (26) when ,2,0 ==  7.0,1 ==  (c) plot of 25.0=

(d) plot of 5.0= , (e) plot of 75.0= . 
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5. CONCLUSION 

 Refined Initial Guess Adomian Decomposition Method (RIG-ADM) was used to solve the 

Generalized Burger-Huxley Equation at classical order and fractional order. The results obtained 

were presented in tabular and graphical formats and shows more efficient and accurate solutions 

when compared with other semi-analytical methods, making them a valuable tool for researchers. 
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