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 ABSTRACT. The study introduces GARCH family models in modelling stock returns volatility on 

investor’s decision-making and risk management in the Nigerian Stock Exchange market. Data (Dangote 

Cement PLC, Nigerian Flourmill, Guinness PLC, Nestle PLC and Unilever PLC) are sourced from 

ng.invest.com. The parameters of ARCH and GARCH models are estimated by maximum 

likelihood estimation method while the Lagrange Multiplier (LM) test is proposed testing 

heteroskedasticity. The results show that the data obtained within the sample period exhibit non-normality 

and no presence of autocorrelation in the squared standardized residuals. The FIGARCH model estimates 

the daily return series of Dangote Cement PLC, Nigerian Flourmill, Nestle PLC and Unilever PLC while 

the TGARCH model is more suitable for the Guinness PLC within the sampled period based on our 

diagnostic checks (Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC)). These findings are significant as they provide stakeholders with a deeper understanding of the 

patterns in the series, the leverage effect and make informed decisions on how to manage the associated 

risks. It is also important to note that the government's intervention in supporting struggling companies 

through policy creation is crucial, especially during periods of reduced returns and high inflation.  

 

 

1. INTRODUCTION 

 

Nigerian stock market, like stock markets worldwide, serves as a source of long-term financing 

for governmental development projects, private sector investments, and has acted as a catalyst 

during the banking system consolidation in the mid-2000s. Understanding the nature of the 

financial market return process, particularly the combination of drift and volatility, have been the 

focus of recent studies. Volatility can have detrimental effects on the smooth functioning of the 

financial system and overall economic performance. The volatility of stocks changes according to 

the relevance of the news as well as the degree to which the news surprise investors. Some financial 

experts and statisticians see the causes of volatility embedded in the arrival of new unanticipated 

information that altered returns on a stock [1]. Others claim that volatility are caused mainly by 
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changes in trading volume, practices or patterns, which in turn are driven by factors such as 

modifications in macroeconomic policies, shift in investors’ tolerance of risk and increase 

uncertainty [2]. According to [3], several factors contribute to the depreciation of stock prices in 

the Nigerian stock exchange market such as weak production base, import-dependent production 

structure, fragile export base, weak non-oil export earnings, expansionary monetary and fiscal 

policies, inadequate foreign capital inflow, excess demand for foreign exchange relative to supply, 

fluctuations in crude oil earnings, unguided trade liberalization policy, speculative activities, 

authorized dealers' sharp practices (round-tripping), over-reliance on an imperfect foreign 

exchange market, heavy debt burden, weak balance of payments position, and capital flight. 

 

Stock market volatility analysis is important for decision-making in the case of capital and asset 

allocation. Policymakers use volatility estimates as an indicator of financial market vulnerability. 

Excessive volatility, however, undermines the reliability of stock prices as a signal for a firm's true 

intrinsic value. This challenges the concept of informational efficiency in markets. Having a clear 

understanding of volatility in the stock market is a veritable tool in assessing the cost of capital 

and making informed decisions about asset allocation. Activities in Nigeria, such as the 

recapitalization of the banking industry in July 2004 and the insurance industry in September 2005, 

have had a positive impact on the stock market. These activities led to an increase in the number 

of securities listed as well as heightened public awareness and confidence in the market. These 

increased trading activities may have influenced stock market volatility. However, in recent times, 

investors have expressed concerns about the declining stock prices in the Nigerian stock market. 

Also, the Nigerian stock market is a developing and inefficient one characterized by the time lag 

between information availability about a stock and its full reflection in the price of the stock, poor 

infrastructural facilities in the country which makes it virtually impossible for information to flow 

freely and speedily to actual and potential investors, activities of corporate insiders and insider 

abuses. Hence, an understanding of volatility and stock price forecasting in Nigerian stock market 

will be imperative as it helps in forecasting the path of its economy’s growth and determines the 

efficiency of the stock market which will serve as an indicator of economic growth and 

development in Nigeria and in turn attract foreign portfolio investment. 

 

Unlike linear time series where stocks are assumed to be uncorrelated but not necessarily 

identically independently distributed, nonlinear time series depicts that stocks are assumed to be 

identically independently distributed but there is a nonlinear function relating the observed time 

series 

= 0}{ tt  and the underlying shocks 

=0}{ tt . The effect of a violation of the assumption of 

heteroskedasticity is that the best linear unbiased estimation model is no longer consistent and as 
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a result the regression output in terms of test statistics is longer reliable. This is because the 

variance which is in the heart of these statistics is no longer constant and will hence be misleading. 

Heteroskedasticity in the time series will take a graphically different appearance as the issue here 

is that the variance, or the volatility, will vary according to time. Some scholars like [4] and [5] 

have looked at the properties of volatility in the financial markets and there is wide recognition of 

the presence of heteroskedasticity in the distribution of returns. Mandelbroth [6] and [7] describe 

these phenomena as a clustering of volatility where a period of high volatility is likely to be 

followed by another period of high volatility and opposite. Engle and Ng [8] attribute the causes 

of volatility to the arrival of new, unanticipated information that alters expected returns on a stock. 

Changes in local or global economic environments, trading volume, trading practices or patterns 

can impact on information that is available to the market. Shiller [9] sees market volatility as a 

fundamental shift in investors’ behaviour. Such behaviour is seen to be driven less by fundamental 

variables and more by sociological and psychological factors (behavioural finance model) as 

cultural changes and increasingly optimistic forecasts by analysts. Veronesi [10] and [11] see the 

behaviour as learning-induced phenomenon. They opined that the growth rate of the economy is 

unknown, and investors attempt to infer it from a variety of public signals. This inference process 

makes asset prices also depend on the investors’ guesses about the dividend growth rate and thus 

induces higher return volatility. Roll [12] posits that volatility is affected by market micro-structure 

while [13] explained it by the liquidity provision process wherein when market makers infer the 

possibility of adverse selection, then they adjust their trading ranges which in turn increases the 

band of oscillation. Onyeka-Ubaka, et al. [14] show that the newly introduced generalized student-

t distribution is the most general of all the useful distributions applied in the Bilinear GARCH 

(BL-GARCH) model parameter estimation.  

 

Importantly, empirical studies relating to the probability of distributions of daily stock prices 

changes use dependent models where variance is conditional. Studies have focused on GARCH 

family processes where volatility varies over time and are persistent. In GARCH family models, 

variance changes over time as a function of past squared deviations from the mean and past 

variances. Researchers have confirmed the existence of relationship between volatility in 

consecutive periods, which could be utilized in forecasting future volatility in financial markets. 

These are accomplished through the application of modelling techniques such as autoregressive 

conditional heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity 

(GARCH), fractional integrated generalized autoregressive conditional heteroskedasticity 

(FIGARCH) and threshold generalized autoregressive conditional heteroskedasticity (TGARCH). 

To adequately fit a GARCH family models, they are essential to conduct diagnostics checks 

alongside estimation. This approach is supported by previous research of [15]. In their research, 
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they examined and compared estimates of different variations of GARCH models that incorporate 

breaks in relation to US dollar rates, with the break points determined exogenously. For our paper, 

we specifically focus on the selected GARCH family models to empirically capture the stylized 

facts present in the selected companies’ stock prices using Gaussian, Student's t, and generalized 

error distribution (GED) to determine the most suitable volatility forecasting model with the 

appropriate error distribution. 

 

2. MATERIALS AND METHODS 

  

Engle [16] proposed the autoregressive conditional heteroskedastic (ARCH) model in which the 

conditional variance of a time series is a function of past shocks. The model provided a rigorous 

way of empirically investigating issues involving the volatility of economic variables in which the 

conditional variance 2

t  is given as:  
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22          (2.1) 

The ARCH model assumes that positive and negative shocks have the same effects on volatility. 

This is contrary to what is observed in practice where prices of financial assets respond differently 

to positive and negative shocks. The ARCH model is rather restrictive, for instance, 
2

1  of an 

ARCH(1) model must be in the interval [0, 1/3] if the series is to have a finite fourth moment. The 

ARCH model does not provide any new insight for understanding the sources of variation in 

financial time series data and sometimes, it over-parameterizes when the lag lengths elongate.  

 

2.1   GARCH Model [17] 

High frequency series such as stock returns are known with some stylized facts, common among 

which are volatility clustering, fat-tail and asymmetry. Mandelbrot [5] and [18] deduce that daily 

stock index returns are non-normal and tend to have leptokurtic and fat-tailed distribution. For this 

reason, [17] relaxed the traditional normality assumption to accommodate time varying volatility 

in high frequency data by assuming that such data follows student t-distribution. Furthermore, [19] 

established that a GARCH model with normally distributed errors could not be a sufficient model 

for explaining kurtosis and slowly decaying autocorrelations in return series. The generalized 

ARCH (GARCH) model introduces a conditional heteroskedasticity model that includes lags of 

the conditional variance as regressors in the model for the conditional variance (in addition to lags 

of the squared error terms 
22

2

2

1 ,,, qttt eee −−−  ). This model has only three parameters that allow an 
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infinite number of squared errors to influence the current conditional variance (volatility). The 

general framework of this model, GARCH (p, q), is expressed by allowing the current conditional 

variance to depend on the first p past conditional variances as well as the q past squared 

innovations. That is, 
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where 00;0  ji and  , to ensure strictly positive conditional variance 2

t , p is the 

number of lagged 2 terms and q is the number of lagged 2  terms. The simple specification for 

GARCH(1,1) is: 

Mean equation: ttr  +=        (2.3) 

Variance equation: 2

11

2

11

2

−− ++= ttt                  (2.4) 

where 00;0 11   and , tr   = return of the asset at time t,   = average returns, t  = 

residual returns, defined as: 

ttt z =                         (2.5) 

where tz  is a sequence of independent and identically distributed (iid) random variables with mean 

zero and variance 1. The constraints 00 11   and , are needed to ensure 2

t  is strictly 

positive [4, 20]. In this model, the mean equation is written as a function of constant with an error 

term. Since 2

t  is the one-period ahead forecast variance based on past information, it is called 

the conditional variance. The conditional variance equation specified is a function of three terms: 

a constant term ω, news about volatility from the previous period measured as the lag of the 

squared residuals from the mean equation: 2

1−t  (the ARCH term); and last period forecast variance: 

2

1−t  (the GARCH term). ARCH and GARCH models do not capture asymmetric effect since the 

lagged error terms are squared in the equations for the conditional variance, and therefore a positive 

error has the same impact on the conditional variance as a negative error. 

 

2.2   EGARCH Models [21] 

In the context of financial time series analysis, the asymmetry effect refers to the characteristic of 

time series on asset prices that an unexpected drop tends to increase volatility more than an 

unexpected increase of the same magnitude (or, that 'bad news' tends to increase volatility more 

than 'good news'). In an exponential GARCH (EGARCH) model, the natural logarithm of the 

condition variance is allowed to vary over time as a function of the lagged error terms (rather than 

lagged squared errors). The EGARCH (p,q) model for the conditional variance can be written as: 
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The EGARCH model is asymmetric because the level 
it

it
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 is included with coefficient 𝛾𝑖. Since 

the coefficient is typically negative, positive return shocks generate less volatility than negative 

return shocks assuming other factors remain unchanged. In order to capture asymmetric responses 

of the time-varying variance to shocks, this study employs EGARCH(1,1) model, which has the 

following specification: 

Mean equation: ttr  +=         (2.7) 

Variance equation: 
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The EGARCH model which captures asymmetric properties between returns and volatility was 

proposed to address three major deficiencies of GARCH model. They are (i) parameter restrictions 

that ensure conditional variance positivity; (ii) non-sensitivity to asymmetric response of volatility 

to shock and (iii) difficulty in measuring persistence in a strongly stationary series. The log of the 

conditional variance in the EGARCH model signifies that the leverage effect is exponential and 

not quadratic. The specification of volatility in terms of its logarithmic transformation implies the 

non-restrictions on the parameters to guarantee the positivity of the variance [22], which is a key 

advantage of EGARCH model over the symmetric GARCH model. Malmsten and Terasvirta [23] 

argue that first order EGARCH model in normal errors is not sufficiently flexible enough for 

capturing kurtosis and autocorrelation in stock returns; however, they suggested how the standard 

GARCH model could be improved by replacing the normal error distribution with a more fat-tailed 

error distribution. This is possible because increasing the kurtosis of the error distribution will help 

standard GARCH model to capture the kurtosis and low autocorrelations in stock return series. 

Nelson [21] notes that a student-t distribution could imply infinite unconditional variance for the 

errors; hence, an error distribution with a more fat-tailed than normal will help to increase the 

kurtosis as well as reduce the autocorrelation of the squared observations. Nelson [21], therefore, 

assumes that EGARCH model is stationary if the innovation has a generalized error distribution 

(GED). 

 

 

2.3   FIGARCH Model [24] 

The fractionally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH) 

model was introduced by [24]. Under the FIGARCH model, the effect of the lagged squared 
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innovations (unexpected return shocks) on the conditional variance decays with a slow hyperbolic 

rate. Therefore, the FIGARCH model can capture long-memory effects while still allowing the 

shocks to decay unlike the IGARCH model. To get a better understanding we take a look at the 

FIGARCH(𝑝,𝑑,𝑞) model, in which p determines the number of autoregressive lags (GARCH 

effect) and q determines the number of moving average lags (ARCH effect). It is important to note 

that in the FIGARCH model, the coefficient of the ARCH effect is   but not   as in the simple 

GARCH model. Nevertheless, it will still be interpreted in a similar way, namely as the ARCH 

parameter [25] and thus as the influence of the unexpected shocks. We will follow the general 

approach used in practice regarding the volatility modelling of stock returns and rely on first order 

models with only one lag, as they have proven to be a good representation of conditional variance 

processes [24]. Under the condition 10  d , the process displays long memory for the 

conditional variance which will die out over time [25].  The closer the fractional differencing 

parameter d goes to one, the higher the memory of the FIGARCH model [26]. Furthermore, with 

d = 0 the FIGARCH collapses to a simple GARCH and with d = 1, it converges to the integrated 

GARCH (IGARCH) model. Modelling the return series as an ARMA (1,1) process: 

 
11 −− +++= tttt rr         (2.9) 

allows us to already incorporate an AR and a MA effect in the mean equation, with t  being the 

unexpected return shock (error term). Given that t   is a discrete time real-valued stochastic 

process, ttt    with ),0(~),1,0(~ 2

ttt   . We are able to model the conditional variance 

series as a FIGARCH(1,𝑑,1) process, with t  representing the available information set at time 

𝑡−1, as a time varying function,  A FIGARCH(𝑝,𝑑,𝑞) process can be displayed using the following 

equation: 

 tt vLLL )](1[)](1)[( 2  −+=−       (2.10) 

In which L is defined as the backshift operator, which lags the coefficients: 
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The fractional differencing operator is given as:  
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In which Γ(z) defines the gamma function as:  
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Rearranging equation (2.10) with 22

tttv  −=  yields the following expression for the FIGARCH 

(p,): 

 22 ])1)(()(1[)](1[ t

d

t LLLL  −−−+=−                                       (2.15)  

The conditional variance of the stochastic process t  is then given by:  

 𝜎𝑡
2 = 𝜔[1 − 𝛽(𝐿)] − 1 + {1 − [1 − 𝛽(𝐿)] − 𝜙(𝐿)(1 − 𝐿)𝑑}𝜂𝑡

2              (2.16)  

 

2.4   The Threshold GARCH (TGARCH) Model [27] 

Another volatility model commonly used to handle leverage effects is the threshold GARCH 

(TGARCH) which allows the conditional standard deviation to depend on sign of lagged 

innovation. The version TGARCH(1,1) model specification of the conditional variance is given 

as: 

 𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛾𝑑𝑡−1𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1

2      (2.17) 

where 𝑑𝑡−1 is a dummy variable, that is, 

 𝑑𝑡−1 = {
1      𝑖𝑓 𝜀𝑡−1 < 0, 𝑏𝑎𝑑 𝑛𝑒𝑤𝑠
0    𝑖𝑓 𝜀𝑡−1 > 0, 𝑔𝑜𝑜𝑑 𝑛𝑒𝑤𝑠

      (2.18) 

The coefficient 𝛾 is known as the asymmetry or leverage term. When 𝛾 = 0, the model collapses to 

the standard GARCH forms, otherwise when the shock is positive (i.e. good news) the effect on 

volatility is 𝜎1. But when it is negative (i.e. bad news) the effect on volatility is 𝛼1 + 𝛾. Hence, if 𝛾 is 

significant and positive, negative shocks have a larger effect on 𝜎𝑡
2 than positive shocks [28]. The 

specification does not show parameter restrictions to guarantee the positivity of the conditional 

variance. However, to ensure stationarity of the TGARCH model, the parameters of the model 

must be restricted and the choice of error distribution accounts for the stationarity. TGARCH 

model is closely related to GJR-GARCH model developed by [29]. Ding et al. [30] further 

generalized the standard deviation GARCH model initially proposed by [31] and [32] and called 

it Power GARCH (PGARCH).  This model relates the conditional standard deviation raised to a 

power, d (positive exponent) to a function of the lagged conditional standard deviations and the 

lagged absolute innovations raised to the same power. This expression becomes a standard 

GARCH model when the positive exponent is set at two.  

2.5   Estimation of the Model Parameters 
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The statistical techniques used for this paper include the non-normality distribution of fat tails; 

Augmented Dickey-Fuller test for stationarity and their model diagnostics. Regarding the return’s 

estimation, as [33] pointed out “there are both theoretical and empirical reasons for preferring 

logarithmic returns. Theoretically, logarithmic returns are analytically more tractable when linking 

together sub-period returns to form returns over long time intervals. Empirically, logarithmic 

returns are more likely to be normally distributed and so, conform to the assumptions of the 

standard statistical techniques. This is the reason for using logarithmic returns in this study since 

one of the objectives was to test whether the daily returns were normally distributed or show signs 

of asymmetry (skewness). The computation formula for the daily returns is as follows: 

 𝑟𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
)         (2.19) 

where 𝑟𝑡 is the return of the stock price in period t; 𝑃𝑡  is the stock price in period t and, 𝑃𝑡−1 is the 

stock price in period t-1. When estimating the parameters of ARCH or GARCH models, even 

though ordinary least squares (OLS) estimation is consistent, maximum likelihood estimator 

(MLE) is the most popular method, where parameters are chosen such that the probability of 

occurrence of data under its assumed density function is the maximum and produces an 

asymptotically normal and efficient parameter estimates. To test for this heteroskedasticity, the 

Lagrange Multiplier (LM) test proposed by [16] is applied. That is, an autoregressive moving 

average ARMA (1,1) model for the conditional mean in the returns series is employed as an initial 

regression and then, test the null hypothesis that there are no ARCH effects in the residual series. 

This implies that we obtain the residuals te  from the ordinary least squares regression of the 

conditional mean equation. For an ARMA(1,1) model, the conditional mean equation is: 

 1111 −− ++= tttt rr             (2.20) 

In addition, the squared residuals, 2

te  is regressed on a constant and q lags as in the equation:   
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The null hypothesis, 0: 210 ==== q  ; states that there is no ARCH effect up to order q 

against the alternative, 0:1  i ; for at least one i = 1, 2, …, q. Finally, the test statistic for the 

joint significance of the q-lagged squared residuals is the number of observation times the R-

squared )( 2R  from the regression, where 2R  is evaluated against 
2

)(q  distribution. 

We employ the Augmented Dickey–Fuller (ADF) test based on the following regression: 

 ∆𝑦𝑡 = 𝜑 + 𝛽𝑡 + 𝛼𝑦𝑡−1 + ∑ 𝑑𝑖∆𝑦𝑡−1 + 𝑢𝑡
𝑘
𝑖=1                 (2.22) 

where 𝑢𝑡 is a white noise error term and ∆𝑦𝑡−1 = 𝑦𝑡−1 − 𝑦𝑡−2, ∆𝑦𝑡−2 = 𝑦𝑡−2 − 𝑦𝑡−3, etc. Equation 

(2.22) tests the null hypothesis of a unit root against a trend stationary alternative. The Philips-

Perron (PP) test is equally conducted on the return series, which uses models like the Dickey-
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Fuller tests but with Newey-West non-parametric correction for possible autocorrelation rather 

than the lagged variable method employed in the ADF test. The Philips-Perron test is computed 

from the equation below: 

 𝑦𝑡 = 𝛿𝑡 + 𝛾𝑦𝑡−1 + 𝛾1∆𝑦𝑡−1 + ⋯ + 𝛾𝑝∆𝑦𝑡−𝑝 + 𝜇𝑡          (2.23) 

where 𝛿𝑡 is the deterministic trend component, and maybe 0, 𝜑 or 𝜑 + 𝛽𝑡, 𝛾 is the coefficient of 

the of the lagged value.  

 

To estimate the parameters of the underlying FIGARCH model, we again rely on the approach 

proposed by [24]. To obtain maximum likelihood estimates for the FIGARCH(𝑝,𝑑,𝑞) model the 

following log likelihood function must be optimized: 

 𝑙𝑜𝑔𝐿(𝜃; 𝜂1, 𝜂2, … , 𝜂𝑇) = −0.5𝑇𝑙𝑜𝑔(2𝜋) − 0.5 ∑ [𝑙𝑜𝑔(𝜎𝑡
2) + 𝜂𝑡

2𝜎𝑡
−2]𝑇

𝑡=1   (2.24)  

where 𝜃′ = (𝜔, 𝑑, 𝛽1, … , 𝛽𝑝, 𝜙1, … , 𝜙𝑞) = (𝜔, 𝑑, 𝛽1, 𝜙1) displays the starting values under which 

the log likelihood function is maximized. The global maximum can be achieved using the 

maximum Likelihood estimation. The second equality holds since we use a first order model with 

only one lag each. These parameters are namely 𝜔, 𝑑, 𝛽1, 𝜙1 respectively, a constant, the long-

memory parameter, the GARCH effect and the ARCH effect. Using the global maximum obtained, 

the parameter of the appropriate model can be estimated through a search algorithm that tries 

several different coefficients before converging on the optimum values. To verify our obtained 

results, we manually compare the conditional volatility series from each subseries, with the sample 

volatility series as well as the conditional volatility series of the whole data set, to see whether the 

according parts resemble each other. In certain cases, we obtain implausible parameter estimates 

from starting values that result in log likelihood, which is an outlier and is only above the second 

largest log likelihood value by an extremely small margin. If this happens, we manually adjust the 

optimal starting parameters to yield more plausible results, namely by choosing the starting values 

which result in the next largest log likelihood value. After estimating the parameters of our models, 

we use statistical diagnostic checks to select the best model(s) to be used for forecasting.  

 

3. RESULTS 

We analyze the data on daily stock prices of selected companies from 27th March, 2012 to 30th 

December, 2022 using E-Views statistical packages. The descriptive (summary) statistics are 

presented on Table 3.1. 
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Table 3.1: Summary Statistics of Stock Returns 
 Dangote PLC Flour mill Guinness PLC Nestle Unilever 

Mean 0.000583 0.000203 -0.000112 0.000633 4.18E-05 

Median 0.000000 0.000000 0.000000 0.000000 0.000000 

Maximum 0.102500 0.132200 0.102400 0.102500 0.126200 

Minimum -0.100000 -0.124400 -0.100900 -0.10000 -0.104700 

Std. Dev. 0.021001 0.030867 0.026964 0.021170 0.028806 

Skewness 0.445508 0.057832 0.233610 0.290491 0.134751 

Kurtosis 9.586513 5.782551 7.296037 9.714096 5.867516 

Jarque-Bera 4677.141 782.7065 1960.016 4681.697 868.5850 

Probability 0.000000 0.000000 0.000000 0.000000 0.000000 

Sum 1.482400 0.000000 -0.281200 1.565500 0.105100 

Sum Sq. Dev. 1.120269 0.491400 1.830755 1.108274 2.084478 

Observation 2541 2422 2519 2474 2513 

 

Table 3.1 presents the descriptive statistics for the variables. For the period under examination, 

Dangote cement PLC exhibits a mean, median, maximum, and minimum of 0.000583, 0.000000, 

0.102500, and -0.100000 respectively. The standard deviation and Jarque-Bera statistic value are 

0.021001 and 4677.141 respectively, at a 5% level of significance. Similarly, Nigerian Flourmill 

PLC has a mean, median, maximum, and minimum of 0.000203, 0.000000, 0.132200, and -

0.124400 respectively. The standard deviation and Jarque-Bera statistic value are 0.030867 and 

782.7065 respectively, at a 5% level of significance. Guinness PLC has mean, median, maximum 

and minimum of -0.000112, 0.000000, 0.102400, and -0.100900 respectively for the time period 

examined. And has standard deviation and Jarque-Bera statistic value of 0.026964 and 1960.016 

respectively, at 5% level of significance. Furthermore, Nestle PLC has mean, median, maximum 

and minimum of 0.000633, 0.000000, 0.1025000 and -0.10000 respectively for the time period 

examined. And has standard deviation and Jarque-Bera statistic value of 0.021170 and 4681.697 

respectively at 5% level of significance. Unilever PLC has mean, median, maximum and minimum 

of 4.18E-05, 0.000000, 0.126200 and -0.104700 respectively for the time period examined. And 

has standard deviation and Jarque-Bera statistic value of 0.028806 and 868.5850 respectively at 

5% level of significance.  

  

From the summary statistics of the variables, the skewness, kurtosis and Jarque Bera statistics 

confirm non-normality for all the variables at 5% level of significance. Hence, Figures 3.1 to 3.5 

below present the time series plots of the selected companies. The plots show that the series 

exhibits non-stationary behaviour which implies time-varying volatility in daily stock prices.  
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Figure 3.1: Dangote cement Plc Time Plot                Figure 3.2: Nigerian Flourmill Plc Time Plot 

      
Figure 3.3: Guinness Plc Time Plot                      Figure 3.4: Nestle Plc Time Plot 

 

                                     
Figure 3.5: Unilever Time Plot 

 

The results from the ADF test with a linear time trend are reported in Table 3.2. Using the ADF 

test with trend, the unit root cannot be rejected for five variables at 5% level of significance. Hence 

the results conform to the time series plots presented earlier 

Table 3.2: Unit Root Test (ADF Test) for Stock Price 

Variables 

 

         Test Statistics P-Value 

Dangote Cement Plc. 0             -2.86248 0.1067 

Flourmill Plc. 1             -2.86253 0.3616 

Guinness Plc. 1             -2.86249 0.4294 

Nestle Plc. 0             -2.86251 0.0643 

Unilever Plc. 1             -2.86249 0.6356 
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        Note:  is the AIC lag term used to select the optimal lag, to make the residuals white noise 

Since all the p-values for the stock price are greater than 0.05 (5% level of significance); we do 

not have enough reasons to reject the unit root null hypothesis. Hence, the stock price for Dangote 

cement PLC, Flourmill PLC, Guinness PLC, Nestle PLC, and Unilever PLC are nonstationary. 

Hence, we take the first difference of the series and further test for stationarity of stock returns. 

 

 

 

 

Table 3.3: Unit Root Test (ADF Test) 

Variables 

 

             Test Statistics P-Value 

Dangote Plc. 0                  -2.86248 0.0001 

Flourmill Plc. 0                   -2.86253 0.0001 

Guinness Plc. 4                   -2.86249 0.0000 

Nestle Plc. 2                    -2.86251 0.0000 

Unilever Plc. 4                    -2.86249 0.0000 

Note:  is the AIC lag term used to select the optimal lag, to make the residuals white noise 

 

From Table 3.3, Since the absolute t-statistics values of all the series are greater than the absolute 

critical values 2.8625 or p-values less than 0.05 (5% level of significance), we have enough reasons 

to reject H0 at first difference for Dangote cement PLC, Nigerian Flourmill PLC, Guinness PLC, 

Nestle PLC and Unilever PLC. Hence, the series obtained are stationary. 

 

To test stationarity, the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) are plotted on figures 3.6 - 3.10. The plots show that the ACF and PACF of the residuals 

are not autocorrelated. After the lag-0 correlation, the subsequent correlations drop quickly to zero 

and stay (mostly) between the limits of the significance level (dashed blue lines). Therefore, we 

can conclude that our data for the five companies meets the assumption of no autocorrelation. The 

ACF cuts off after lag one indicating a moving average of order one (MA(1)) while the PACF cuts 

off after lag one pointing to autoregressive model of order one (AR(1) for all the series. It is also 

observed that there are spikes after lag one indicating the autoregressive moving average 

(ARMA(1, 1)) model should be tried as well to aid in the lag length of our models during 

estimation.  
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     Figure 3.6a: ACF of Dangote cement PLC   Figure 3.6b: PACF of Dangote cement PLC     

     
  Figure 3.7a: ACF of Nigerian Flourmill PLC  Figure 3.7b: PACF of Nigerian Flourmill PLC 

             
Figure 3.8a: ACF of Nestle PLC   Figure 3.8b: PACF of Nestle PLC 

 

 
Figure 3.9a: ACF of Guinness PLC           Figure 3.9b: PACF of Guinness PLC 
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Figure 3.10a: ACF of Unilever PLC     Figure 3.10b: PACF of Unilever PLC 

 

Before estimating the ARCH and GARCH models, we investigate the stock return series to identify 

its statistical properties and to see if it meets the pre-conditions for the ARCH and GARCH models, 

that is, clustering volatility and ARCH effect in the residuals. The series of daily stock returns for 

the five companies seem to randomly fluctuate around zero, meaning there is little 

autocorrelation. This is confirmed by a plot of the sample autocorrelation function and the 

partial autocorrelation function. The figures 3.11 - 3.15 show that return series oscillate around 

the mean value (mean reverting) and approximately constant variance. Volatility of stock returns 

are high for consecutive periods and low for another consecutive period, this feature of sustained 

periods of calmness and sustained periods of high volatility was first observed by Mandelbroth 

(1963) as volatility clustering, a stylized fact financial time series exhibit, a condition necessary 

for the application of GARCH family models. 

       
Figure 3.11: Plot of Dangote cement PLC Stock returns     Figure 3.12: Plot of Nigerian Flourmill PLC Stock returns 

         
Figure 3.13: Plot of Guinness PLC Stock returns      Figure 3.14: Plot of Nestle PLC Stock returns 

 

 
Figure 3.15: Plot of Unilever PLC Stock returns 
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The ARCH effect is concerned with a relationship within the heteroskedasticity, often termed 

serial correlation of the heteroskedasticity. It often becomes apparent when there is bunching in 

the variance or volatility of a particular variable, producing a pattern which is determined by some 

factor (see Figures 3.11 to 3.15). The stock returns are further subjected to Heteroskedasticity test 

presented on Table 3.4. 

 

 

 Table 3.4: Results of test for ARCH effect on daily Returns Data   
Heteroskedasticity Test Dangote Flourmill Guinness Nestle Unilever 

F-statistic  

Prob.F 

93.78251 

(1,2537) 

0.0000* 

182.7059 

(1,2418) 

0.0000* 

136.3554 

(1,2515) 

0.0000* 

57.19592 

(1,2470) 

0.0000* 

72.63143 

(1,2509) 

0.0000* 

Obs*R-squared 

Prob. Chi-square(1) 

90.51063 

0.0000* 

170.0109 

0.0000* 

129.4457 

0.0000* 

55.94671 

0.0000* 

70.64429 

0.0000* 

Note: The asterisks are the P-values. The hypothesis is: 

 : no ARCH effects vs. : ARCH (p) disturbance. 
 

Table 3.4 shows the results of the test for ARCH effect. ARCH-effect is present if the coefficient 

of the lagged value of residual squared (𝜀𝑡−1
2 ) is positive and if the estimate is statistically 

significant. From the results in table 3.4, the coefficient of (𝜀𝑡−1
2 ) are positive. Also, based on the 

t-test as well as F-test and Chi-square test, the estimate is significant at the 5% level. Therefore, 

the null hypothesis that there is no ARCH-effect is rejected. Having established that ARCH-effect 

is present, the parameters of the appropriate model were estimated through a search algorithm that 

tries several different coefficients before converging on the optimum values. 

 

Table 3.5: Parameter Estimates of Selected Models for Daily Returns Data of five companies 

         

GARCH (1, 1) 

Dangote  

 

 

Flourmill 

 

 

Guinness 

 

 

Nestle 

 

 

Unilever 

 

1.32E-14 

(1.30E-14, 1.016941) 

 

5.83E-05 

(4.45E-06, 13.09370) 

 

0.000203 

(1.26E-05, 16.04500) 

 

9.95E-05 

(6.50E-06, 15.31144) 

 

0.000133 

(1.27E-05, 10.45564) 

 

0.299309 

(0.022309, 13.41680) 

 

0.157194 

(0.011344, 13.85712) 

 

0.220118 

(0.020223, 10.88439) 

 

0.117022 

(0.010710, 13.85712) 

 

0.128804 

(0.012826, 10.04264) 

 

0.591369 

(0.003771, 156.8204) 

 

0.784845 

(0.011793, 66.55206) 

 

0.504311 

(0.027093, 18.61404) 

 

0.663920 

(0.019731, 33.64923) 

 

0.711782 

(0.023329, 30.51001) 

 

EGARCH (1,1)    0.046772 
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Dangote  

 

 

Flourmill 

 

 

Guinness 

 

 

Nestle 

 

 

Unilever 

-2.614236 

(0.149385, -17.4999) 

 

-0.897244 

(0.054137, -16.5735) 

 

-2.815584 

(0.172059, -16.3641) 

 

-3.041865 

(0.188568, -16.1314) 

 

-2.029926 

(0.181625, -11.1765) 

0.333954 

(0.018189, 18.36069) 

 

0.1343194 

(0.011344, 17.85542) 

 

0.220132 

(0.020234, 14.69245) 

 

0.276426 

(0.010743, 15.75597) 

 

0.128843 

(0.012823, 12.58177) 

0.690248 

(0.018365, 37.58429) 

 

0.896487 

(0.006775, 132.4323) 

 

0.644770 

(0.022429, 28.74699) 

 

0.627597 

(0.023492, 26.71510) 

 

0.738185 

(0.024057, 30.51034) 

(0.013177, 3.549486) 

 

0.084845 

(0.011796, 2.655206) 

 

0.070204 

(0.053717, 3.167308) 

 

0.103483 

(0.015469, 6.689808) 

 

-0.002223 

(0.013301, -0.155474) 

 

TGARCH (1,1) 

Dangote  

 

 

Flourmill 

 

 

Guinness 

 

 

Nestle 

 

 

Unilever 

 

2.41434 

(0.14955, -17.47394) 

 

-2.51430 

(0.12334, -15.4565) 

 

-3.45341 

(0.34232, 16.34567) 

 

2.61876 

(0.23467, -15.4376) 

 

-1.65673 

(0.12334, -15.4565) 

 

0.338964 

(0.01839, 18.3689) 

 

0.245442 

(0.01245, 17.66768) 

 

0.333457 

(0.01293, 17.95847) 

 

0.234561 

(0.01235, 17.68935) 

 

0.235448 

(0.01879, 17.68978) 

 

0.673100 

(0.01315, 60.4731) 

 

0.668220 

(0.015336, 43.57113) 

 

0.672504 

(0.041932, 10.29473) 

 

0.523047 

(0.01451, 13.9484) 

 

0.685040 

(0.060928, 11.24339) 

 

0.369200 

(0.072352, 5.093946) 

 

2.3947 

(0.025763, -8.6459) 

 

-0.017722 

(0.030862, -0.219166) 

 

0.0474051 

(0.012638, 3.753931) 

 

0.03692 

(0.072518, 5.09391) 

FIGARCH(1,1) 

Dangote  

 

 

Flourmill 

 

 

Guinness 

 

 

Nestle 

 

 

Unilever 

 

0.134319 

(0.149385, -17.4994) 

 

0.514430 

(0.12334, -15.45650) 

 

0.476558 

(0.038015, 12.53594) 

 

-2.029926  

(0.181625, -11.1764) 

 

1.15673 

(0.12334, -15.4565) 

 

-0.333954 

(0.018189, 18.36069) 

 

0.245440 

(0.01245, 17.66768) 

 

0.055093 

(0.013537, 4.069656) 

 

0.23458 

(0.01235, 17.68935) 

 

-0.23544 

(0.01879, 17.68978) 

 

0.614236 

(0.011344, 17.85542) 

 

0.644770 

(0.022429, 28.74699) 

 

0.650044 

(0.033248, 19.55111) 

 

0.31876 

(0.021347, -15.4376) 

 

0.606232 

(0.023595, 55.36020) 

 

-0.084845 

(0.011796, 2.655206) 

 

-0.071255 

(0.017711, 3.963787) 

 

-0.000169 

(1.52E-05, 11.10318) 

 

0.128843 

(0.012823, 12.58177) 

 

0.177901 

(0.013539, 13.13971) 

 

Note: The bracketed is the Standard error and Z-statistic respectively. The Variance Equation of GARCH (1, 1) for 

example for the five Companies (Dangote PLC, Flourmills, Guinness, Nestle and Unilever are:  +  = 0.89, 

 +  = 0.94,  +  =0.72,   +  = 0.78 and  +  = 0.84, respectively. 

 

In all the estimation, the results of the variance (volatility) equation is presented in Table 3.5. In 

GARCH (1, 1) model, the coefficients   (constant), ARCH term (α) and GARCH term (β) are 

statistically significant at 5% level of significance for the Dangote cement PLC, Nigerian Flourmill 
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PLC, Guinness PLC, Nestle PLC and Unilever PLC return series. The significance of both α and 

β indicates that, lagged conditional variance and lagged squared residuals have an impact on the 

conditional variance. In other words, news about volatility (i.e., fluctuation) from previous periods 

has an explanatory power over current volatility. The sum of the two estimated ARCH and 

GARCH (α + β) coefficients which is regarded as the persistence coefficient is less than one for 

all the selected companies’ return series, which is required to have a mean reverting process. These 

values closer to 1 indicate that shocks to volatility are very high and will remain for a very long 

period. All the coefficients in EGARCH (1, 1) are statistically significant at 5% confidence level 

for the Dangote cement Plc., Nigerian Flourmill Plc., Guinness Plc., Nestle Plc and Unilever Plc 

return series. The estimates of the leverage effect (γ) are positive and significant at 5% confidence 

level for the returns. These results are inconsistent with the conventional situation where negative 

signs are assumed for leverage effect presence. It is therefore evident that in all our series, volatility 

can be said to be positively correlated with returns, i.e., falling returns are followed by lower 

volatility, indicating the nonexistence of leverage effects in the daily series during the study period. 

In TGARCH (1, 1) model, the estimates of the leverage effect (γ) are positive and significant at 

5% confidence level for the returns except for Guinness which is negative and not significant at 

5% confidence level for the returns. The positive γ (i.e. good news) indicate that the effect on 

volatility is  while the negative γ (i.e. bad news) indicates the effect on volatility is  

Looking at FIGARCH (1, 1), all the coefficients are statistically significant at 5% confidence level 

for the Dangote cement Plc., Nigerian Flourmill Plc., Guinness Plc., Nestle Plc. and Unilever Plc 

return series. The estimates of the leverage effect (γ) are a mixture of negative and positive, and 

significant at 5% confidence level for the returns. It is therefore evident that in all our series 

(Dangote cement, Nigerian Flourmill and Guinness), bad news has a negative impact on the 

return’s volatility than good news. That is, falling returns are followed by high volatility indicating 

the existence of leverage effects except for the Nestle and Unilever return series during the study 

period. 

 

The diagnostic checks of the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) for the GARCH, EGARCH, FIGARCH and TGARCH models are summarized in 

Table 3.6. The results show that the FIGARCH model is preferred for evaluating daily return series 

for Dangote cement Plc., Flourmill Plc., Nestle Plc. and Unilever Plc. while the TGARCH 

modeling technique is preferred for the daily return series for Guinness Plc. during the study 

period. The criteria are to pick the least AIC and BIC values as the best fit model for our data. 
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Table 3.6: AIC and BIC Values for Selected Models 
Companies/Models ARCH(1) GARCH(1,1) EGARCH(1,1) FIGARCH(1,1) TGARCH(1,1) 

 AIC             BIC AIC             BIC AIC             BIC AIC             BIC AIC             BIC 

Dangote Plc. -4.9970    -4.9811 -5.0161   -5.0004 -5.0032  -4.9872 -5.0214   -5.0054 -5.0177  -5.0017 

Flourmill Plc. -4.2385    -4.2042 -4.3513    -4.3171 -4.1321  -4.0979 -4.3659   -4.3317 -4.3511   -4.3169 

Guinness Plc. -4.5038    -4.5085 -4.5335    -4.5388  -4.5244   -4.5297 -4.5337   -4.5390 -4.5373   -4.5426 

Nestle Plc. -4.9346    -4.5163 -4.9461   -4.5283 -4.9531   -4.5353 -4.9661   -4.5483 -4.9546   -4.5368 

Unilever Plc -4.3112    -4.5024 -4.3426   -4.5338 -4.3345   -4.5257 -4.3478   -4.5398 -4.3420   -4.5332 

 

Having selected the models, volatility forecasts for thirty days of the series based on the models 

are presented in Figures 3.16 - 3.20.  

                
 
Figure 3.16: Dangote Forecast performance using FIGARCH Model      Figure 3.17: Flourmill Forecast performance using FIGARCH Model      

 

           
Figure 3.18: Nestle Forecast performance using FIGARCH Model       Figure 3.19: Unilever Forecast performance using FIGARCH Model      
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Figure 3.20: Guinness Forecast performance using TGARCH Model      

 

 

 

 

 

4. DISCUSSION 

The parameters of the selected GARCH family models are estimated by maximum likelihood 

estimation method while the Lagrange Multiplier (LM) test is proposed for testing 

heteroskedasticity. The sum of the two estimated ARCH and GARCH (α + β) coefficients 

which is regarded as the persistence coefficient is less than one for all the selected companies’ 

return series, which is required to have a mean reverting process. All the coefficients are 

statistically significant at 5% confidence level for the Dangote cement Plc., Nigerian Flourmill 

Plc., Guinness Plc., Nestle Plc. and Unilever Plc return series when FIGARCH (1, 1) model 

was employed. 

The analysis also shows that the FIGARCH model that has been fitted seems appropriate for the 

data at a 1% confidence level because the autocorrelation function (AC), partial autocorrelation 

function (PAC), and Q-statistics show that there is no statistically significant trace of 

autocorrelation left in the squared standardized residual indicating that the mean equation and 

variance equation are adequately specified. The AIC and BIC metrics, which measure how 

effectively the model used for the analysis captures the empirical features in high frequency time 

series select the model(s) with minimal values. Modern applications of time series analysis using 

Bayesian analysis, convolutional neural networks, a non-linear generalization of autoregressive 

models, a natural blend of practical time series analysis, and machine learning may be employed 

for further comparison.  

 

5. CONCLUSION 

 

This paper has examined the best models for capturing more stylized facts (volatility clustering, 

leverage effects and leptokurtosis) and to provide a better in-sample fit and/or out-of-sample 

forecast. The in-sample period was from 27th March 2012 to 30th December 2022 and the out-of-
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sample was done one hundred and twenty-five days ahead. The discrepancy in the performance of 

the volatility models in both in-sample and out-sample forecast can result from the fact that the 

dynamics of the volatility may have changed during the long-time horizon of the data and the 

volatility of stock prices may have shifted over time. The dynamics of volatility are stationary and 

are expected to be steady, especially over a long-time horizon. It is to be noted that during the 

period of the data used, the world witnessed one of the greatest financial crises of all time which 

quite likely might have changed the dynamics of the markets. Another reason for divergence 

between the out-of-sample performances may be due to the nature of the model fitting. That is, a 

model that is back tested to perfection and has a good in-sample performance can become sluggish 

and unresponsive to changes in the volatility and sudden shocks while a model which performs 

poorly in the in-sample fit might be more flexible and hence be able to accommodate changes in 

volatility dynamics and shocks. There might also be a trade-off between fitting the model to the 

in-sample data and the model alertness to new inputs.  An important finding is not only limited to 

the different ranking of the models when using different loss functions, but also how dramatically 

it can differ. It is quite a contrast that one loss function suggests that a particular model is the worst 

and another loss function ranks that same model to be the best. All through this research and taking 

note of the Akaike Information Criterion (AIC) for the GARCH, EGARCH, FIGARCH and 

TGARCH models, it was concluded that the FIGARCH modeling technique is more preferred for 

evaluating daily return series for Dangote cement Plc., Flourmill Plc., Nestle Plc. and Unilever 

Plc. while the TGARCH modeling technique is more preferred for daily return series for Guinness 

Plc. during the period of this study, (see table 3.6). The evidence of long memory in volatility 

across the indices suggests that FIGARCH model adequately describes the persistence than the 

conventional GARCH models.  Therefore, in the backdrop of the present study, long memory 

models such as FIGARCH are recommended for volatility forecasting. The use of high frequency 

data and individual stocks composing different indices for further analysis would clarify the 

dynamics of market and explain interaction between volatility persistence and market 

microstructure variables. 
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