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BRIEF STUDY ON SOME PROPERTIES OF SYMMETRIC
CARDIO-BAZILEVIC FUNCTIONS

JAMIU OLUSEGUN HAMZAT AND OLALEKAN FAGBEMIRO

Abstract. Bazilevic functions consist of functions defined by certain integral
I say, which are entirely univalent in the unit disk. They contain some other
class of functions as special cases. In the recent time, the study of Bazilevic
functions became so popular that researchers (especially in Geometric Func-
tion Theory, GFT) have had to study different subclasses of Bazilevic functions
as related to various domains. However, their study seem to lack full vigour
addressing relevant connections of Bazilevic functions to certain interesting
domain called the symmetric cardioid domain. In characterization of these
Bazilevic functions, the geometry of the image domains is very critical. Conse-
quently, in this article, with the aid of Salagean derivative operator, the author
derived a new Bazilevic class Bαn (A,B, σ), type α, associated with symmetric
cardioid domain. This was achieved via the Hadamard product of certain frac-
tional analytic function g(z)α and the normalized univalent function f(z) using
subordination principle. In the sequel, a new geometrical formation regarding
the said class of Bazilevic functions was obtained. Additionally, sharp bounds
on the first three Taylor-Maclaurin coefficients for functions belonging to the
aforementioned class were obtained while the relationship of these bounds to
the classical Fekete-Szego inequality was established using a very lucid Math-
ematical approach.

1. Introduction

The interaction of geometry and analysis is possibly the most fascinating aspect
of complex function theory. Geometric function theory is the branch of complex
analysis that deals with the study of geometric properties of analytic functions.
These functions are pivotal in the analysis of practical problems such as image
processing and signal processing among others. Furthermore, in 1955, a Russian
Mathematician (Bazilevic) started the study of the Bazilevic functions I say, and
since then, a rather fast flood of follow-up to his work have resulted on the study
of various subclasses of Bazilevic functions. Since the configuration of the image
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domain is very germane in the enactment of Bazilevic functions, therefore, for
a panoramic and effective study of these functions, a careful analysis of the ge-
ometrical properties of their domains should be of priority. In the recent time,
the study of Bazilevic function became so popular that researchers (especially
in Geometric Function Theory, GFT) have had to study different subclasses of
Bazilevic functions as related to various domains. However, their studies seem
to lack full vigour addressing relevant connections of Bazilevic functions to the
symmetric cardioid domain. In [16], Malik et al. studied a domain called sym-
metric cardioid domain. Motivated in this direction, the present author aim at
contributing to the existing literatures by obtaining the estimates of the first few
Taylor-Maclaurin coefficients for functions belonging to the new class of Bazilevic
function associated with Symmetric Cardioid Domain (otherwise known as cardio-
Bazilevic function) while relevant connections of the coefficients so obtained to
the popular Fekete-Szego inequality were investigated using lucid mathematical
technique. This study is unique and became so necessary owned to the way the
author defined the Bazilevic class Bα

n (A,B, σ) via convolution and the applica-
tion of cardioid domain (which is very useful in radiography, physics, and other
fields of science and engineering) in Geometric Function Theory.

Let E denote the unit disk, that is, E = {z : |z| < 1; z ∈ C}. Also let Ω denotes
the class of analytic functions f(z) having the form

f(z) = z +
∞∑
k=2

akz
k, z ∈ C (1.1)

gratifying the normalization conditions:

f(0) = 0 and f ′(0) = 1

in the unit disk E.
In [7], Hamzat and Oladipo considered certain fractional analytic function g(z)α

of the form:

g(z)α =
zα

1− z
= zα +

∞∑
k=2

zα+k−1,

for real number α(α > 0) in E, see [8]. Using the concept of convolution and
applying Salagean differential operator respectively, then

f(z)α = f(z) ∗ g(z)α = zα +
∞∑
k=2

akz
α+k−1 (1.2)

and

Dnf(z)α = αnzα +
∞∑
k=2

(α + k − 1)nakz
α+k−1. (1.3)

It is observed that

<
{
Dnf(z)α

αnzα

}
> 0, (α > 0, n ∈ N0 = N ∪ {0} , z ∈ C). (1.4)

Interestingly, (1.4) coincides with the famous class of Bazilevic functions studied
by different authors, for details (see [5] and [19]) among others.
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Furthermore, an analytic function f(z) is said to be subordinate to another
analytic function g(z) (expressed as f ≺ g), if there exist a unit bound function
r(z) satisfying the conditions:

r(0) = 0 and |r(z)| < 1,

such that

f(z) = g(r(z)), z ∈ E.
At this juncture, using the principle of subordination, the class Bα(n) of Bazilevic
functions can be written using the principle of subordination as{

Dnf(z)α

αnzα

}
≺ p(z), (1.5)

where p(z) belongs to the famous class of Caratheodory functions P (that is,
functions with positive real parts) satisfying the conditions:

p(0) = 0 and <{p(z)} > 0 z ∈ E.
It is quite interesting to note that the geometric formations of the image do-
main of p(E) depend on the definition given to P . For instance, the class P of
Caratheodory functions can be defined via subordination principle such that

P =

{
p(z) ≺ 1 + z

1− z
, p(0) = 1; p′(0) = 1; z ∈ E

}
. (1.6)

Then it is obvious from (1.6) that the geometry of the image domain of p(z) is
1+z
1−z , which is the right half of the complex plane. In addition, several subclasses
of P are obtained for various choices of function p(z). Below are the few cases
(among others) with their respective symmetric domains, which were studied by
different authors.

1. The authors in [9] and [26], studied the circular domain centered at 1−rs
1−s2

and radius r−s
1−s2 for which

p1(z) =
1 + rs

1− sz
, −1 ≤ s < r ≤ 1.

2. Also the author in [25] studied the right half of the lemniscate of Bernoulli
|w2 − 1| = 1 for

p2(z) = (1 + z)1/2.

3. The author in [4], examined the plane to the right of the vertical line u = β,
for which

p3(z) =
1 + (1− 2β)z

1− z
, 0 ≤ β < 1.

4. In [11] and [28], the authors investigated the parabolic domain, for which

p4(z) = 1 +
( 2

π2

)2(
log

1 +
√
z

1−
√
z

)2
.
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5. In [20], Paprocki and Sokol considered the leaf-like domain such that

p5(z) =
( 1 + z

1 + 1−b
b
z

)1/a
, a ≥ 1, b ≥ 1/2.

6. The author in [27], worked on the nephroid domain whereby

p6(z) = 1 + z − z3

3
.

7. Raina and Sokol in [23] investigated the crescent-shaped domain for which

p7(z) = z + (1 + z2)1/2.

8. The authors in [14], [18] and [24], examined the oval and petal type domain,
where

p8(z) =
(r + 1)pj(z)− (r − 1)

(s+ 1)pj(z)− (s− 1)
, −1 ≤ s <≤ 1, j = 3, 4, 5.

9. Kanas and Masih in [10], studied the pascal snail domain for which

p9(z) =
2(1− t)z
(1− βz)2

, 0 ≤ β < 1, t ∈ (−1, 1)− {0} .

10. Cho et al. in [3], studied the eight-shaped domain, where

p10(z) = 1 + sinz.

11. Piejko and Sokol in [21] examined the booth lemniscate for which

p11(z) = 1 +
z

1− βz2
, 0 ≤ β < 1.

12. Masih and Kanas in [17], investigated the limacon-shaped domain, where

p12(z) = (1 + dz)2, 0 < d <
1√
2
.

13. Hamzat and Oladipo in [6], studied the shell-like curve for which

p13(z) =
1 + σ2z2

1− σz − σ2z2
, σ =

1−
√

5

2
= −0.618.

14. Also, Hamzat and Oladipo in [6], considered S-shaped region, where

p14 =
2

1 + e−z
.
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In addition, the mapping of the unit disk via the function p13(z) given above
generates the conchoid of Maclaurin such that

p(eiθ) =

√
5

2(3− 2cosθ)
+ i

sinθ(4cosθ − 1)

2(3− 2cosθ)(1 + cosθ)
, 0 ≤ θ < 2π.

Moreover, p13(z) has the series form:

p13(z) =
1 + σ2z2

1− σz − σ2z2
= 1 +

∞∑
k=1

(
uk−1 + uk+1

)
σkzk,

where uk = (1−σ)k−σk
√
5

, k = 1, 2, 3, ... and σ = −0.618.

The above series representation in (1.7) has a close link with the sequence of
Fibonacci number given that

u0 = 0, u1 = 1, uk+2 = uk + uk+1, k = 0, 1, 2, 3, ... .

Therefore, p13(z) can be expressed as

p13(z) = 1 + σz + 3σ2z2 + 4σ3z3 + 7σ4z4 + 11σ5z5 + ... .

Here, we consider a case whereby

p̄(A,B, σ; z) =
2 + (A− 1)σz + 2Aσ2z2

2 + (B − 1)σz + 2Bσ2z2
, (1.7)

where −1 ≤ B < A ≤ 1, σ = −0.618 and z ∈ E. By letting

u = <
{
p̄(A,B, σ; eiθ)

}
and v = Im

{
p̄(A,B, σ; eiθ)

}
,

then the image p̄(A,B, σ; eiθ) of the unit disk generates a cardioid-like curve given
by the parametric equations:

u =
4 + (A− 1)(B − 1)σ2 + 4ABσ4 + 2ψcosθ + (A+B)σ2cosθ

4 + (s− 1)2σ2 + 4B2σ4 + 4σ(B − 1)(1 + sσ2)cosθ + 8Bσ2cos2θ

and

2σ(A−B)(1− σ2)sinθ + 2σ2sin2θ

4 + (B − 1)2σ2 + 4B2σ4 + 4σ(B − 1)(1 + sσ2)cosθ + 8Bσ2cos2θ
,

where ψ = (A+B−2)σ+(2AB−A−B)σ3, −1 ≤ B < A ≤ 1 and (0 ≤ θ < 2π),
see [15].

Remark A
It is easily seen from (1.8) that
1. p̄(A,B, σ; 0) = 1

2. p̄(A,B, σ; 1) = AB+9(A+B)+4(B−A)
√
5+1

B2+18B+1
.
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Definition 1:
Let Bα

n (A,B, σ) denote the class of cardio-Bazilevic functions consisting of the
functions f(z)α of the form (1.2), satisfying the geometric condition:

Dnf(z)α

αnzα
≺ p̄(A,B, σ; z), (1.8)

where α > 0, −1 ≤ B < A ≤ 1, σ = −0.618 and p̄(A,B, σ; z) is as defined in (1.8).

Remark B
Suppose that A = 1 and B = −1 in (1.9), then the class Bα

n (A,B, σ) crack down
to the class of Bazilevic functions associated with Fibonacci number.

2. Results

Before proceeding into the results, the following lemmas which shall be useful in
the course of this study shall be stated.

Lemma 2.1 [22]: Let the function p ∈ P be of the form

p(z) = 1 +
∞∑
k=1

ckz
k, z ∈ E,

the inequality |ck| ≤ 2 holds true for each k ≥ 1. Equality is attained for function
p(z) given by p(z) = 1+z

1−z .

Lemma 2.2 [12], [13]: Let p ∈ P . Then for complex number µ∣∣c2 − µc21∣∣ ≤ 2max {1, |2µ− 1|} .

Lemma 2.3 [1], [2]: Let p ∈ P . Then for α, β, γ ∈ R and z ∈ E∣∣ac31 − bc1c2 + xc3
∣∣ ≤ 2|a|+ 2|b− 2a|+ 2|a− b+ x|.

This first result is a motivation from the work of [15].

Theorem 2.4: Let f(z)α be of the form (1.2). If f(z)α ∈ Bα
n (A,B, σ), then

for α > 0, −1 ≤ B < A ≤ 1, σ = −0.618, n ∈ N0 = N ∪ {0} and m ≥ 2

∣∣am∣∣ ≤ ( α

α +m− 1

)n(
Γ+

m−2∑
k=1

[
1+|σ|2

(∣∣∣∣B − 1

2

∣∣∣∣+|B||σ|
)2](

α + k − 1

α

)2n∣∣ak∣∣2)
1
2

,

(2.1)
where

Γ =

[
1 + |σ|2

(∣∣∣∣A− 1

2

∣∣∣∣2 +A|σ|2
)]

+

[
1 + |σ|2

∣∣∣∣B − 1

2

∣∣∣∣2
](

α +m− 2

α

)2n∣∣am−1∣∣2.
Proof: Since f(z)α belong to the class Bα

n (A,B, σ), then from (2.1), we have

Dnf(z)α

αnzα
= p̄(A,B, σ;φ(z)) =

2 + (A− 1)σφ(z) + 2Aσ2(φ(z))2

2 + (B − 1)σφ(z) + 2Bσ2(φ(z))2
, z ∈ E. (2.2)
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It is easily seen from (2.2) that
∞∑
k=2

(
α + k − 1

α

)n
akz

k−1 = σ(φ(z))

[(A− 1

2

)
−
(B − 1

2

)(
1+

∞∑
k=2

(
α + k − 1

α

)n
akz

k−1
)]

+ σ2(φ(z))2
[
A−B

(
1 +

∞∑
k=2

(
α + k − 1

α

)n
akz

k−1
)]
. (2.3)

Simplifying further, we obtain
∞∑
k=1

(
α + k − 1

α

)n
akz

k−1 = 1+σ(φ(z))

[(A− 1

2

)
−
(B − 1

2

) ∞∑
k=1

(
α + k − 1

α

)n
akz

k−1
]

+σ2(φ(z))2
[
A−B

∞∑
k=1

(
α + k − 1

α

)n
akz

k−1
]

(a1 = 1).

That is,
∞∑
k=1

(
α + k − 1

α

)n
akz

k = z+σ(φ(z))

[(A− 1

2

)
z−
(B − 1

2

) ∞∑
k=1

(
α + k − 1

α

)n
akz

k

]

+ σ2(φ(z))2
[
Az −B

∞∑
k=1

(
α + k − 1

α

)n
akz

k

]
. (2.4)

(2.4) can be expressed as
m∑
k=1

(
α + k − 1

α

)n
akz

k +
∞∑

k=m+1

(
α + k − 1

α

)n
δkz

k

= z + σ(φ(z))

[(A− 1

2

)
z −

(B − 1

2

)m−1∑
k=1

(
α + k − 1

α

)n
akz

k

]

−σ2(φ(z))2
[
Az −B

m−2∑
k=1

(
α + k − 1

α

)n
akz

k

]
,

where
∞∑

k=m+1

(
α + k − 1

α

)n
δkz

k =
∞∑

k=m+1

(
α + k − 1

α

)n
akz

k

+σ(φ(z))
(B − 1

2

) ∞∑
k=m

(
α + k − 1

α

)n
akz

k

+σ2(φ(z))2B
∞∑

k=m−1

(
α + k − 1

α

)n
akz

k.

Also from (2.4), one can say that∣∣∣∣ m∑
k=1

(
α + k − 1

α

)n
akz

k +
∞∑

k=m+1

(
α + k − 1

α

)n
δkz

k

∣∣∣∣2
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=

∣∣∣∣z + σ(φ(z))

[(A− 1

2

)
z −

(B − 1

2

)m−1∑
k=1

(
α + k − 1

α

)n
akz

k

]

−σ2(r(z))2
[
Az −B

m−2∑
k=1

(
α + k − 1

α

)n
akz

k

]∣∣∣∣2.
Now∣∣∣∣ m∑
k=1

(
α + k − 1

α

)n
γkz

k

∣∣∣∣2 =

∣∣∣∣z+σ(r(z))
(A− 1

2

)
z−σ(r(z))

(B − 1

2

)(α +m− 2

α

)n
am−1z

m−1−H
∣∣∣∣2,

where

H = σ2(φ(z))2Az+σ(φ(z))
(B − 1

2

)m−2∑
k=1

(
α + k − 1

α

)n
akz

k+σ2(φ(z))2
m−2∑
k=1

B

(
α + k − 1

α

)n
akz

k

and (
α + k − 1

α

)n
γk =


(
α+k−1
α

)n
ak, for 1 ≤ k ≤ m(

α+k−1
α

)n
δk, for k > m

(2.5)

Recall that

1

2π

2π∫
0

∣∣∣∣ ∞∑
k=1

(
α + k − 1

α

)n
γk
(
reiθ
)k∣∣∣∣2dθ =

∞∑
k=1

∣∣∣∣(α + k − 1

α

)n
γk

∣∣∣∣2r2k
(
since

∣∣ei2θ∣∣ = 1, z = reiθ, 0 < r < 1, 0 ≤ θ < 2π
)
.

It implies that

∞∑
k=1

∣∣∣∣(α + k − 1

α

)n
γk

∣∣∣∣2r2k < 1

2π

2π∫
0

∣∣∣∣reiθ−σ(φ(reiθ))
(B − 1

2

)(α +m− 2

α

)n
am−1(re

iθ)m−1−H
∣∣∣∣2dθ,

where

H = σ2(φ(reiθ))2A(reiθ) + σ(φ(reiθ))
(B − 1

2

)m−2∑
k=1

(
α + k − 1

α

)n
ak(re

iθ)k

+σ2(φ(reiθ))2
m−2∑
k=1

B

(
α + k − 1

α

)n
ak(re

iθ)k − σ(φ(reiθ))
(A− 1

2

)
reiθ.

That is,

∞∑
k=1

∣∣∣∣(α + k − 1

α

)n
γk

∣∣∣∣2r2k < 1

2π

2π∫
0

(
reiθ−σ(r(z))

(B − 1

2

)(α +m− 2

α

)n
am−1r

m−1(eiθ)m−1−H
)

x

[
re−iθ − σ(φ(re−iθ))

(B − 1

2

)(α +m− 2

α

)n
am−1(re

−iθ)m−1 −H∗
]
dθ,
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where

H = σ2(φ(reiθ))2A(reiθ) + σ(φ(reiθ))
(B − 1

2

)m−2∑
k=1

(
α + k − 1

α

)n
ak(re

iθ)k

+σ2(φ(reiθ))2
m−2∑
k=1

B

(
α + k − 1

α

)n
ak(re

iθ)k − σ(φ(reiθ))
(A− 1

2

)
(reiθ).

and

H∗ = σ2(φ(re−iθ))2A(re−iθ) + σ(φ(re−iθ))
(B − 1

2

)m−2∑
l=1

(
α + l − 1

α

)n
al(re

−iθ)l

+σ2(φ(re−iθ))2
m−2∑
l=1

B

(
α + l − 1

α

)n
al(re

−iθ)l − σ(φ(re−iθ))
(A− 1

2

)
re−iθ.

Since the product of two integrals with k 6= l yields zero, therefore using triangle
inequality
m∑
k=1

(
α + k − 1

α

)2n∣∣ak∣∣2r2k+ ∞∑
k=m+1

(
α + k − 1

α

)2n∣∣δk∣∣2r2k ≤ r2
[
1+|σ|2

(∣∣∣A− 1

2

∣∣∣2+∣∣σ∣∣2A)]

+
∣∣σ∣∣2∣∣∣B − 1

2

∣∣∣2(α +m− 2

α

)2n∣∣∣am−1∣∣∣2r2(m−1)+∣∣σ∣∣2 m−2∑
k=1

(∣∣∣B − 1

2

∣∣∣+∣∣∣σB∣∣∣)2(
α + k − 1

α

)2n∣∣ak∣∣2r2k.
Now, letting r → 1 and using the fact that a+ b ≤ c+ d =⇒ a ≤ c+ d, then

m∑
k=1

(
α + k − 1

α

)2n∣∣ak∣∣2 ≤ [1 + |σ|2
(∣∣∣A− 1

2

∣∣∣2 +
∣∣σ∣∣2A)]

+
∣∣σ∣∣2∣∣∣B − 1

2

∣∣∣2(α +m− 2

α

)2n∣∣∣am−1∣∣∣2+∣∣σ∣∣2 m−2∑
k=1

(∣∣∣B − 1

2

∣∣∣+∣∣σB∣∣)2(
α + k − 1

α

)2n∣∣ak∣∣2.
Furthermore,(

α +m− 1

α

)2n∣∣am∣∣2 +

(
α +m− 2

α

)2n∣∣am−1∣∣2 +
m−2∑
k=1

(
α + k − 1

α

)2n∣∣ak∣∣2
≤
[
1 + |σ|2

(∣∣∣A− 1

2

∣∣∣2 +
∣∣σ∣∣2A)]+

∣∣σ∣∣2∣∣∣B − 1

2

∣∣∣2(α +m− 2

α

)2n∣∣∣am−1∣∣∣2
+
∣∣σ∣∣2 m−2∑

k=1

(∣∣∣B − 1

2

∣∣∣+
∣∣σB∣∣)2(

α + k − 1

α

)2n∣∣ak∣∣2,
so that (

α +m− 1

α

)2n∣∣am∣∣2 ≤ [1 + |σ|2
(∣∣∣A− 1

2

∣∣∣2 +
∣∣σ∣∣2A)]

+

[
1+
∣∣σ∣∣2∣∣∣B − 1

2

∣∣∣2](α +m− 2

α

)2n∣∣∣am−1∣∣∣2+m−2∑
k=1

[
1+
∣∣σ∣∣2(∣∣∣B − 1

2

∣∣∣+∣∣σB∣∣)2](
α + k − 1

α

)2n∣∣ak∣∣2.
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This obviously completes the proof of theorem 2.4.
Setting α = 1 in theorem 2.4, then the following corollary is obtained.

Corollary 2.5: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
n(A,B, σ), then

for −1 ≤ B < A ≤ 1, σ = −0.618, n ∈ N0 and m ≥ 2

∣∣am∣∣ ≤ ( 1

m

)n(
Γ +

m−2∑
k=1

[
1 + |σ|2

(∣∣∣∣B − 1

2

∣∣∣∣+ |B||σ|

)2]
k2n
∣∣ak∣∣2)

1
2

,

where

Γ =

[
1 + |σ|2

(∣∣∣∣A− 1

2

∣∣∣∣2 + A|σ|2
)]

+

[
1 + |σ|2

∣∣∣∣B − 1

2

∣∣∣∣2
](
m− 1

)2n∣∣am−1∣∣2.
Corollary 2.6: Let f(z)α be of the form (1.2). If f(z)α ∈ B1

n(1,−1, σ), then for
σ = −0.618, n ∈ N0 and m ≥ 2

∣∣am∣∣ ≤ ( 1

m

)n(
Γ +

m−2∑
k=1

[
1 + |σ|2

(
1 + |σ|

)2]
k2n
∣∣ak∣∣2)

1
2

,

where

Γ =
[
1 + |σ|4

]
+
[
1 + |σ|2

](
m− 1

)2n∣∣am−1∣∣2.
Corollary 2.7: Let f(z)α be of the form (1.2). If f(z)α ∈ B1

1(1,−1, σ), then for
σ = −0.618 and m ≥ 2

∣∣am∣∣ ≤ ( 1

m

)(
Γ +

m−2∑
k=1

[
1 + |σ|2

(
1 + |σ|

)2]
k2
∣∣ak∣∣2)

1
2

,

where

Γ =
[
1 + |σ|4

]
+
[
1 + |σ|2

](
m− 1

)2∣∣am−1∣∣2.
Corollary 2.8: Let f(z)α be of the form (1.2). If f(z)α ∈ B1

0(1,−1, σ), then for
σ = −0.618 and m ≥ 2

∣∣am∣∣ ≤ ([1 + |σ|4
]

+
[
1 + |σ|2

]∣∣am−1∣∣2 +
m−2∑
k=1

[
1 + |σ|2

(
1 + |σ|

)2]
k2
∣∣ak∣∣2)

1
2

.

Corollary 2.9: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
0(1,−1,−0.618),

then for m ≥ 2

∣∣am∣∣ ≤ (1 + 1459 + 1.3819
∣∣am−1∣∣2 +

m−2∑
k=1

[
1.7293

]
k2
∣∣ak∣∣2)

1
2

.

Theorem 2.10: Let f(z)α be of the form (1.2). If f(z)α ∈ Bα
n (A,B, σ), then for



LAGJMA-2024/02 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 11

α > 0, −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0 = N ∪ {0}∣∣a2∣∣ ≤ ∣∣σ∣∣
2

(
A−B

)( α

α + 1

)n
, (2.6)

∣∣a3∣∣ ≤ ∣∣σ∣∣
2

(
A−B

)( α

α + 2

)n
max

{
1,
∣∣∣1
2

[
σ
(
5−B

)]∣∣∣} (2.7)

and ∣∣a4∣∣ ≤ ∣∣σ∣∣
2

(
A−B

)( α

α + 3

)n
. (2.8)

The inequality in (2.6) is the best possible for the function f0(z) given by

f0(z)α = αn
z∫

0

tα.p̄
(
A,B, σ; t

)
dt = zα +

1

2
σ(A−B)

( α

α + 1

)n
zα+1

+
1

4
σ2(A−B)(5−B)

( α

α + 2

)n
zα+2+

1

8
σ3(A−B)

(
5−10B+B2

)( α

α + 3

)n
zα+3+... .

(2.9)
Also the inequality in (2.7) is the best possible for the function f1(z) given by

f1(z)α = αn
z∫

0

tα.p̄
(
A,B, σ; t2

)
dt = zα +

1

2
σ(A−B)

( α

α + 2

)n
zα+2

+
1

4
σ2(A−B)(5−B)

( α

α + 4

)n
zα+4+

1

8
σ3(A−B)

(
5−10B+B2

)( α

α + 6

)n
zα+6+... .

(2.10)
Similarly, the inequality in (2.8) is the best possible for the function f2(z) given
by

f2(z)α = αn
z∫

0

tα.p̄
(
A,B, σ; t3

)
dt = zα +

1

2
σ(A−B)

( α

α + 3

)n
zα+3

+
1

4
σ2(A−B)(5−B)

( α

α + 6

)n
zα+6+

1

8
σ3(A−B)

(
5−10B+B2

)( α

α + 9

)n
zα+9+... .

(2.11)

Proof: Let f(z)α ∈ Bα
n (A,B, σ), then by the principle of subordination, it follows

that
Dnf(z)α

αnzα
= p̄
(
A,B, σ; r(z)

)
, (2.12)

Suppose that p(z) is defined such that

p(z) =
1 + r(z)

1− r(z)
= 1 + c1z + c2z

2 + c3z
3 + ... , (2.13)

where r(z) has the properties that r(0) = 0 and
∣∣r(z)

∣∣ < 1 for z ∈ E and p ∈ P
(class of Caratheodory functions or functions with positive real part). It is easily
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verified from (2.13) that

r(z) =
p(z)− 1

p(z) + 1
=

(1)

2
c1(z) +

1

4

(
2c2 − c21

)
z2

+
1

8

(
c31 − 4c1c2 + 4c3

)
z3 +

1

16

(
6c21c2 − c41 − 8c1c3 − 4c22 + 8c4

)
z4 + ... . (2.14)

Now one can say that

p̄
(
A,B, σ; r(z)

)
= 1 + p̄1r(z) + p̄2

(
r(z)

)2
+ p̄3

(
r(z)

)3
+ p̄4

(
r(z)

)4
+ ...

= 1 +
∞∑
k=0

p̄k
(
r(z)

)k
, (2.15)

where

p̄1 =
1

2

(
A−B

)
σ, p̄2 =

1

4

(
A−B

)(
5−B

)
σ2, p̄3 =

1

8

(
A−B

)(
B2 − 10B + 5

)
σ3,

p̄4 =
1

16

(
A−B

)(
5−35B+15B2−B3

)
σ4, p̄5 =

1

32

(
A−B

)(
B4−20B3+90B2−60B+5

)
σ5 ... .

Therefore, in view of (2.14) and (2.15), we obtain

p̄
(
A,B, σ; r(z)

)
= 1 +

1

2
p̄1c1z +

[
p̄1

(1

2
c2 −

1

4
c21

)
+

1

4
p̄2c

2
1

]
z2

+
[
p̄1

(1

8
c31 −

1

2
c1c2 +

1

2
c3

)
+ p̄2

(
c1c2 −

1

4
c31

)
+

1

8
p̄3c

3
1

]
z3 + ... . (2.16)

Also
Dnf(z)α

αnzα
= 1 +

(α + 1

α

)n
a2z +

(α + 2

α

)n
a3z

2 +
(α + 3

α

)n
a3z

3 + ... . (2.17)

By comparing the coefficients of z, z2andz3 in (2.16) and (2.17), we obtain(
α + 1

α

)n
a2 =

1

2
p̄1c1, (2.18)(

α + 2

α

)n
a3 = p̄1

(1

2
c2 −

1

4
c21

)
+

1

4
p̄2c

2
1 (2.19)

and (
α + 3

α

)n
a4 = p̄1

(1

8
c31 −

1

2
c1c2 +

1

2
c3

)
+ p̄2

(
c1c2 −

1

4
c31

)
+

1

8
p̄3c

3
1. (2.20)

Applying Lemma 2.1, Lemma 2.2 and Lemma 2.3 respectively, in (2.18), (2.19)
and (2.20), we obtain the inequalities in (2.6), (2.7) and (2.8). This completes
the proof of Theorem 2.10.

Corollary 2.11: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
n(A,B, σ), then

for −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0∣∣a2∣∣ ≤ ∣∣σ∣∣
2n+1

(
A−B

)
,

∣∣a3∣∣ ≤ ∣∣σ∣∣
2

(
A−B

)(1

3

)n
max

{
1,
∣∣∣1
2

[
σ
(
5−B

)]∣∣∣}
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and ∣∣a4∣∣ ≤ ∣∣σ∣∣
22n+1

(
A−B

)
.

Corollary 2.12: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
n(1,−1, σ), then

for −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0∣∣a2∣∣ ≤ ∣∣σ∣∣
2n
,
∣∣a3∣∣ ≤ ∣∣σ∣∣

3n
max

{
1,
∣∣∣3σ∣∣∣} and

∣∣a4∣∣ ≤ ∣∣σ∣∣
22n

.

Corollary 2.13: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
1(1,−1, σ), then

for −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0∣∣a2∣∣ ≤ ∣∣σ∣∣
2
,
∣∣a3∣∣ ≤ ∣∣σ∣∣

3
max

{
1,
∣∣∣3σ∣∣∣} and

∣∣a4∣∣ ≤ ∣∣σ∣∣
4
.

Corollary 2.14: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
0(1,−1, σ), then

for −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0∣∣a2∣∣ ≤ ∣∣σ∣∣, ∣∣a3∣∣ ≤ ∣∣σ∣∣max{1,
∣∣∣3σ∣∣∣} and

∣∣a4∣∣ ≤ ∣∣σ∣∣.
Corollary 2.15: Let f(z)α be of the form (1.2). If f(z)α ∈ B1

1(1,−1,−0.618),
then for −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0∣∣a2∣∣ ≤ 0.309,

∣∣a3∣∣ ≤ 0.3819 and
∣∣a4∣∣ ≤ 0.155.

Corollary 2.16: Let f(z)α be of the form (1.2). If f(z)α ∈ B1
0(1,−1,−0.618),

then for −1 ≤ B < A ≤ 1, σ = −0.618 and n ∈ N0∣∣a2∣∣ ≤ 0.618,
∣∣a3∣∣ ≤ 0.1458 and

∣∣a4∣∣ ≤ 0.618.

Theorem 2.17: Let f(z)α be of the form (1.2). If f(z)α ∈ Bα
n (A,B, σ), then for

α > 0, −1 ≤ B < A ≤ 1, σ = −0.618, n ∈ N0 and for complex number µ

∣∣∣a3−a22∣∣∣ ≤ ∣∣σ∣∣2

(
A−B

)( α

α + 2

)n
max

{
1,
|σ|
2

∣∣∣∣(A−B)(α + 2

α

)n( α

α + 1

)2n
− (5−B)

∣∣∣∣}
(2.21)

Proof: f(z)α ∈ Bα
n (A,B, σ), then from (2.18) and (2.19), we obtain

a3 − a22 =
1

4
σ
( α

α + 2

)n[
c2 −

1

4
(2− (5−B)σ)c21

]
− 1

16
σ2(A−B)2

( α

α + 1

)2n
=

1

4
σ(A−B)

( α

α + 2

)n {
c2 − µc21

}
, (2.22)

where

µ =
1

4

(α + 2

α

)n[( α

α + 2

)n(
2− (5−B)σ

)
+ σ(A−B)

( α

α + 1

)2n]
.
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Applying Lemma 2.2 on (2.22), then the desired inequality is obtained as seen in
(2.21).

Corollary 2.18: Let f(z)α ∈ B1
n(A,B, σ), then∣∣∣a3 − a22∣∣∣ ≤ ∣∣σ∣∣

2(3)n
(
A−B

)
max

{
1,
|σ|
2

∣∣∣∣ 3n

22n

(
A−B

)
− (5−B)

∣∣∣∣}
Corollary 2.19: Let f(z)α ∈ B1

n(1,−1, σ), then∣∣∣a3 − a22∣∣∣ ≤ ∣∣σ∣∣
(3)n

max

{
1, |σ|

∣∣∣∣ 3n

22n
− 3

∣∣∣∣} .
Corollary 2.20: Let f(z)α ∈ B1

1(1,−1, σ), then∣∣∣a3 − a22∣∣∣ ≤ ∣∣σ∣∣3
max

{
1,

9|σ|
4

}
.

Corollary 2.21: Let f(z)α ∈ B1
0(1,−1, σ), then∣∣∣a3 − a22∣∣∣ ≤ ∣∣σ∣∣max {1, 2|σ|} .

Corollary 2.22: Let f(z)α ∈ B1
1(1,−1,−0, 618), then∣∣∣a3 − a22∣∣∣ ≤ 0.2864.

Corollary 2.23: Let f(z)α ∈ B1
0(1,−1,−0, 618), then∣∣∣a3 − a22∣∣∣ ≤ 0.7638 .

Conclusion:
Finally, in this paper, anew class of Cardio-Bazilevic functions Bα

n (A,B, σ), type
α, associated with symmetric cardioid domain in the open unit disk E is derived
with the aid of Salagean derivative operator. This was achieved via the subordina-
tion principle and Hadamard product of certain fractional analytic function g(z)α

the normalized univalent function f(z). Additionally, sharp bounds on the first
three Taylor-Maclaurin coefficients for functions belonging to the aforementioned
class were obtained while the relationship of these bounds to the classical Fekete-
Szego inequality was established using a very lucid Mathematical approach while
some of the consequences of the results obtained were discussed as corollaries.
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