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QUASI-SYMMETRIC POLYNOMIALLY BOUNDED FRÉCHET
ALGEBRAS

OLUFEMI O. OYADARE∗

Abstract. This paper concerns the notion of a symmetric algebra and its
generalization to a quasi-symmetric algebra. We study the structure of these
algebras in respect to their hull-kernel regularity and existence of some ideals,
especially the hull-minimal ideals. An immediate application of our results
is to the Harish-Chandra Schwartz Fréchet algebras, Cp(G), of a (connected)
semi-simple G.

1. Introduction

It is well-known, from J. Ludwig([8]) that every semi-simple symmetric poly-
nomially bounded Fréchet algebra is hull-kernel regular and has a hull-minimal
ideal generated by some elements of the algebra. This result gives a way of verify-
ing the existence of hull-minimal ideals and of computing their basis elements in
non-normable algebras of harmonic analysis, as has been shown for the Schwartz
algebras of nilpotent and connected semi-simple groups in J. Ludwig([8]) and O.
O. Oyadare ([10]) respectively.

In this paper we give a generalization of the notion of a symmetric algebra to
that of a quasi-symmetric algebra and establish the importance of this generaliza-
tion by showing that every semi-simple quasi-symmetric polynomially bounded
Fréchet algebra is hull-kernel regular.

2. Preliminaries

For the connected semi-simple Lie group G with finite center, we denote its Lie
algebra by g whose Cartan decomposition is given as g = t⊕p. We also denote by
K the analytic subgroup of G with Lie algebra t. K is then a maximal compact
subgroup of G. Choose a maximal abelian subspace a of p with algebraic dual a∗
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and set A = exp a. For every λ ∈ a∗ put

gλ = {X ∈ g : [H,X] = λ(H)X, ∀H ∈ a},
and call λ a restricted root of (g, a) whenever gλ 6= {0}. Denote by a′ the open
subset of a where all restricted roots are 6= 0, and called the connected components
the Weyl chambers. Let a+ be one of the Weyl chambers, define the restricted
root λ positive whenever it is positive on a+ and denote by 4+ the set of all
restricted positive roots. We then have the Iwasawa decomposition G = KAN ,

where N is the analytic subgroup of G corresponding to n =
∑
λ∈4+

gλ, and the

polar decomposition G = K · cl(A+) ·K, with A+ = exp a+, and cl(A+) denoting
the closure of A+.

If we set M = {k ∈ K : Ad(k)H = H, H ∈ a} and M ′ = {k ∈ K : Ad(k)a ⊂ a}
and call them the centralizer and normalizer of a in K, respectively, then; (i) M
and M ′ are compact and have the same Lie algebra and (ii) the factor w = M ′/M
is a finite group called the Weylgroup. Let a∗C denote the complexification of a∗.
w acts on a∗C as a group of linear transformations by the requirement

(sλ)(H) = λ(s−1H),

H ∈ a, s ∈ w, λ ∈ a∗C. We then have the Bruhat decomposition

G =
⊔
s∈w

BmsB

where B = MAN is a closed subgroup of G and ms ∈ M ′ is the representative
of s (i.e., s = msM).

Some of the most important functions on G are the spherical functions which
we now discuss as follows. A non-zero continuous function ϕ on G shall be called
a (zonal) spherical function whenever ϕ(e) = 1, and we have that

ϕ ∈ C(G//K) := {g ∈ C(G) : g(k1xk2) = g(x), k1, k2 ∈ K, x ∈ G}
and f ∗ ϕ = (f ∗ ϕ)(e) · ϕ for every f ∈ Cc(G//K), where f ∗ g denotes the
convolution of f and g defined as (f ∗ g)(x) :=

∫
G
f(y)g(y−1x)dy. This leads to

the existence of a homomorphism λ : Cc(G//K)→ C given as λ(f) = (f ∗ ϕ)(e).
This definition is equivalent to the satisfaction of the functional relation∫

K

ϕ(xky)dk = ϕ(x)ϕ(y), x, y ∈ G.

It has been shown by Harish-Chandra ([7]) that spherical functions on G can be
parametrized by members of a∗C. Indeed every spherical function on G is of the

form ϕλ(x) =

∫
K

e(iλ−ρ)H(xk)dk, λ ∈ a∗C, ρ =
1

2

∑
λ∈4+

mλ · λ, where mλ = dim(gλ),

and that ϕλ = ϕµ iff λ = sµ for some s ∈ w. Some of the well-known prop-
erties are ϕ−λ(x

−1) = ϕλ(x), ϕ−λ(x) = ϕ̄λ̄(x), λ ∈ a∗C, x ∈ G, and if Ω
is the Casimir operator on G then Ωϕλ = −(〈λ, λ〉 + 〈ρ, ρ〉)ϕλ, where λ ∈ a∗C
and 〈λ, µ〉 := tr(adHλ adHµ) for elements Hλ, Hµ ∈ a. The elements Hλ,
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Hµ ∈ a are uniquely defined by the requirement that λ(H) = tr(adH adHλ)
and µ(H) = tr(adH adHµ) for every H ∈ a. Clearly Ωϕ0 = 0.

Let

ϕ0(x) =

∫
K

exp(−ρ(H(xk)))dk

be denoted as Ξ(x) and define σ : G→ C as σ(x) = ‖X‖ for every x = k expX ∈
G, k ∈ K, X ∈ a where ‖ · ‖ is a norm on the finite-dimensional space a.
These two functions are spherical functions on G and there exist numbers c, d
such that 1 ≤ Ξ(a)eρ(log a) ≤ c(1 + σ(a))d. Also there exists r0 > 0 such that

c0 =:

∫
G

Ξ(x)2(1 + σ(x))r0dx <∞. For each 0 ≤ p ≤ 2 define Cp(G) to be the set

consisting of functions f in C∞(G) for which

‖f‖g1,g2;m := sup
G
|f(g1;x; g2)|Ξ(x)−2/p(1 + σ(x))m <∞

where g1, g2 ∈ U(gC), the universal enveloping algebra of gC, m ∈ Z+, x ∈ G,

f(x; g2) :=
d

dt

∣∣∣∣
t=0

f(x · (exp tg2)) and f(g1;x) :=
d

dt

∣∣∣∣
t=0

f((exp tg1) · x). We call

Cp(G) the Schwartz space on G for each 0 < p ≤ 2 and note that C2(G) is the
well-known Harish-Chandra space of rapidly decreasing functions on G. The in-
clusions C∞c (G) ⊂ Cp(G) ⊂ Lp(G) hold and with dense images. It also follows
that Cp(G) ⊆ Cq(G) whenever 0 ≤ p ≤ q ≤ 2. Each Cp(G) is closed under in-
volution and the convolution, ∗. Indeed Cp(G) is a Fréchet algebra. We endow
Cp(G//K) with the relative topology as a subset of Cp(G).

For any measurable function f on G we define the spherical transform f̂ as

f̂(λ) =

∫
G

f(x)ϕ−λ(x)dx, λ ∈ a∗C. It is known that for f, g ∈ L1(G) we have

(i) (f ∗ g)∧ = f̂ · ĝ on F1 whenever f (or g) is right - (or left-) K-invariant;

(ii) (f ∗)∧(ϕ) = f̂(ϕ∗), ϕ ∈ F1; hence (f ∗)∧ = f̂ on P: and, if we define

f#(g) :=

∫
K×K

f(k1xk2)dk1dk2, x ∈ G, then

(iii) (f#)∧ = f̂ on F1.

3. Main Results

We start with fixing some notions.

3.1 Definition. A Fréchet algebra A is said to be involutive if there is a map
a 7−→ a∗ on A such that a∗∗ = a, (a + b)∗ = a∗ + b∗, (λa)∗ = λ̄a∗, λ ∈ C, and
(a · b)∗ = b∗ · a∗, for all a, b ∈ A.

It is clear that, for each 0 < p ≤ 2, the Fréchet algebra A = Cp(G) or Cp(G//K)
is involutive with involution f 7−→ f ∗ given as

f ∗(x) = f(x−1), x ∈ G.
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Now since the Fréchet algebra we are ultimately going to consider in this work
is a Schwartz algebra we need to impose a growth condition on the members
of the present abstract Fréchet algebra which fits into the general behaviour of
Schwartz functions. Motivated by the estimates of members of Cp(G) as known
above we give the following definition.

3.2 Definition. Let A = (A, {pk}) be an involutive algebra, where {pk} is

the defining collection of seminorms on A, and set e(a) =
∞∑
k=1

ak

k!
for a ∈ A. An

element b ∈ A is said to be polynomially bounded if for every k ∈ N there is a
constant ck = ck(b) > 0 such that

pk(e(iλb)) ≤ ck(1 + |λ|)ck , for all λ ∈ R.

3.3 Remarks.
(1.) This definition may be compared with the weak inequality of the last

chapter using the fact Ξ(x) ≤ 1, for all x ∈ G.
(2.) Clearly e(a) = exp(a)− 1. See J. Dixmier ([6]).
As a guiding example we consider the special (but important) case of when B

is a Banach algebra, (B, ‖ · ‖). In this case, if B(b) is a maximal abelian closed
subalgebra of B containing b, and χ is a character on B(b) for which χ(b) = µ ∈
spec(b)(:= spectrum of b), we know that in general µ ∈ C. i.e., µ = α+ iβ where
α, β ∈ R. However we also know that, for every γ ∈ R,

|eiγµ| = |eiγ(α+iβ)| = |eiγα||e−γβ| = (1)|e−γβ| = e−γβ;

so that e−γβ = |eiγµ| = | exp(iγχ(b)| = |1 + e(iγχ(b))| = |1 + χ(e(iγb))| ≤
1 + ‖e(iγb)‖. That is,

e−γβ ≤ 1 + ‖e(iγb)‖
for all b ∈ B, meaning that ‖e(iγb)‖ grows exponentially in γ, with β a real
constant.

Thus in order to have an element b ∈ B = (B, | · |) to be polynomially bounded
it must be such that β in the above inequality must be zero. i.e., the element b
must have real spectrum. Thus, since every Banach algebra is a Fréchet algebra
we consider the requirement of having a real spectrum for a polynomially bounded
element of the Fréchet algebra, (A, {pk}). We however recall that an involutive
Banach algebra in which the spectrum of every self-adjoint element is a subset of
R is called symmetric and then introduce the following notion of symmetricity.

3.4 Definition. A Fréchet algebra A is said to be symmetric if it admits a
continuous involution and there exists a continuous *-homomorphism, σ, of A
into a C∗−algebra, C, such that specA(a) = specC(σ(a)), for every a ∈ A (Here
specA(a) represents the spectrum of an element a in A defined as

{λ ∈ C : a− λ · 1 is not invertible}).

3.5 Remarks.



74 OLUFEMI O. OYADARE

(1.) By a continuous *-homomorphism σ : A → C we mean a continuous ho-
momorphism σ in which σ(a∗) = σ(a)# where A and C are ∗− and #−involutive
algebras respectively.

(2.) The requirement on the spectrum in (3.4) above is equivalent to saying
that the continuous *-homomorphism, σ, is spectrum invariant.

(3.) If in (3.4) above, we require only that specA(a) ⊆ specC(σ(a)), then we
shall refer to A a quasi-symmetric Fréchet algebra. Clearly every symmetric
Fréchet algebra is automatically quasi-symmetric but not conversely. Thus the
notion of quasi-symmetricity of a Fréchet algebra is more general than that of
the symmetricity in (3.4). Indeed we shall in a moment extend the results of J.
Ludwig ([8] Propositions 1.8 and 1.10) to include all quasi-symmetric Fréchet
algebras.

We now consider the notion of a functional calculus (E. Hille and R. S. Phillips
([18])) that is needed shortly. We start with a Banach algebra example.

3.6 Definition. Let B be a Banach *-algebra. A function ϕ is said to operate
on an element f ∈ B if

(i.) the Gelfand transform, f̂ , of f, with respect to the smallest commutative
Banach sub-algebra B(f) containing f, is real, and

(ii.) there exists a g ∈ B(f) such that ϕ ◦ f̂ = ĝ.

We shall in this case write ϕ{f} = g. Indeed, if for f ∈ B we write e(f) =
∞∑
k=1

(if)k

k!
and if ‖e(nf)‖B = O(‖n‖N) as ‖n‖ → ∞, then every ϕ ∈ Ck

c (R) with

k > N + 1, and ϕ(0) = 0 operates on f and ϕ{f} =
1

2πi

∫
R
ϕ̂(λ)e(λf)dλ so that

‖ϕ{f}‖B ≤ c‖ϕ‖Ck
c (R).

In a Fréchet algebra A we may also employ the functional calculus of C∞-
functions on polynomially bounded elements of A (cf. J. Dixmier [6]. Let us
denote by C∞c,0(R) members ϕ ∈ C∞c (R) in which ϕ(0) = 0, then the integral

1

2πi

∫
R
ϕ̂(λ)e(iλa)dλ exists and converges in A, for any polynomially bounded

elements a ∈ A (J. Dixmier, [6] p. 18). We then define

ϕ{a} =
1

2πi

∫
R
ϕ̂(λ)e(iλa)dλ.

This functional calculus on polynomially bounded elements of A has the following
interesting properties that makes it what we actually need.

Let a be a polynomially bounded element of the Fréchet algebra A, and let
A(a) be a maximal abelian closed subalgebra containing a. If χ is any character
on A(a) then χ(ϕ{a}) = ϕ{χ(a)}. We thus have

χ((ψ · ϕ){a}) = (ψ · ϕ){χ(a)} = ψ{χ(a)} · ϕ{χ(a)} = χ(ψ{a}) · χ(ϕ{a})
for ψ, ϕ ∈ C∞c,0(R). If A(a) is now semi-simple. That is, if ker(χ) = {0} for every
character χ of A(a), then

χ((ψ · ϕ){a}) = χ(ψ{a}) · χ(ϕ{a}) = χ(ψ{a} · ϕ{a})
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implying χ((ψ · ϕ){a} − ψ{a} · ϕ{a}) = 0 so that

ψ{a} · ϕ{a} = (ψ · ϕ){a} · · · · · · (I).

The use to which this calculus is put is contained in the following.

3.7 Proposition (J. Ludwig, [8] p. 80). Let a be a polynomially bounded
element of A. Then there exist ψ, ϕ ∈ C∞c,0(R) such that

ψ{a} · ϕ{a} = ϕ{a}.

Proof. Since C∞c,0(R) is (completely) regular we know that there exist ψ, ϕ ∈
C∞c,0(R) such that ψ ·ϕ = ϕ. Using this relation on the right-hand side of (I) above
gives the result. �

We shall soon see how the result of Proposition 3.7 above simplifies matters
in the proof of an important result of this section, thus making it central to our
discussion. In an attempt to generalise this calculus to the algebra Cp(G//K)
one may introduce a distributional calculus on members of Cp(G), 0 < p ≤ 2. See
O. O. Oyadare ([14] and [15])

This generalisation is analogous to the generalisation of characters of finite and
compact groups as functions on the groups to global characters on connected semi-
simple Lie groups as distributions in which J. G. Arthur ([1]), W. H. Barker ([2],
[3] and [4]) and O. O. Oyadare ([9] and [11]) would prove very useful. However due
to the well-developed theory of Z(gC)−finite K−finite functions and of cusp forms
on connected semi-simple Lie groups no calculus or special Fourier transforms is
needed in the construction of a basis for j(C) in the Schwartz algebras of focus
in the last section of this chapter.

We have seen how to express a primitive Ideal of an associative algebra, A, as
the kernel of some algebraically irreducible representation of A (cf. (4.2.1)). Now
that we have the algebra A to be Fréchet, on which we have a topology induced
by its collection of seminorms, we may employ both algebraic and topological
irreducibility of a representation of A and make a comparison between them. In-
deed we have the following generalisation of (1.8) in J. Ludwig ([8], p. 18) which
is needed in the proof of the major result of this section.

3.8 Lemma. Every algebraically irreducible representation space of a quasi-
symmetric Fréchet algebra A is equivalent to a submodule of a topologically
irreducible representation space of A.

Proof. Since A is quasi-symmetric so also is the adjunction Ã := C1 ⊕ A, of
1 to A. Thus we may assume, without any loss of generality, that A and C have
identities. Now let σ be as in (3.4) and let (T, V ) be an algebraically irreducible
representation of A. We claim that ker(σ) ⊆ ker(T ).

Indeed, if x ∈ ker(σ) and y ∈ A, then the spectrum of yx in A is reduced
to {0}. Suppose on the contrary to the claim, that x ∈ ker(σ) does not imply
x ∈ ker(T ), then Tx 6= 0; so that there exists 0 6= v ∈ V such that (Tx)v 6= 0;
and since T is simple, being algebraically irreducible, then we can find an element
y ∈ A such that T (y)(T (x)v) = v. i.e., (T (yx) − λ · 1)v = 0. This means that 1
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is in the spectrum of yx, a contradiction to the fact that the spectrum of yx is
reduced to {0}. Hence ker(σ) ⊆ ker(T ).

It then follows that there exists a proper maximal left Ideal M of A in which
ker(T ) ⊆ M in which the simple module (T, V ) is equivalent to the left-regular
representation of A on A/M. We note that the sum of C1 and σ(M) is direct in C,
since otherwise 1 ∈ M mod (kerσ) which implies 1 ∈ kerσ ⊆ (T ) ⊆ M. i.e., 1 ∈
M, which is impossible (see C. E. Rickart, [20], Corollary 2.1.2).

Define M̃ := σ(C1 + M) (= C1 + σ(M) ⊆ C) and define a linear functional
ϕ on M̃ by the requirement that ϕ(λ · 1 + σ(m)) = λ for every λ ∈ C, m ∈ M.
In other words for every x ∈ M , which is of the form x = λ · 1 + m we define
ϕ(σ(x)) = λ. Now since x = λ · 1 + m ∈ M we have x − λ · 1 = m ∈ M ;
meaning that (x − λ · 1) is non-invertible in A. i.e., λ ∈ specA(x), and by the
hypothesis of quasi-symmetricity on A, we conclude that λ ∈ SpecC(σ(x)). Thus
|ϕ(σ(x))| = |λ| ≤ sup{|µ| : µ ∈ specC(σ(x))} = ‖σ(x)‖C (cf. Theorem 8 of F. F.
Bonsall and J. Duncan, [16], p. 23). Therefore

‖ϕ‖op = sup
x ∈M
x 6= 0

|ϕ(σ(x))|
‖σ(x)‖C

≤ 1.

Hence by the Hahn-Banach theorem there exists a continuous extension, say ϕ̃,
of ϕ to the whole of C of norm ≤ 1. Since ϕ(1) = 1 and ‖ϕ̃‖op ≤ 1, then ϕ̃

is a positive linear functional for which ϕ̃(σ(C1 + M)) = ϕ̃(M̃) = {0}. Since
M is maximal, we then have that ϕ(σ(M)) = {0} and we can deduce that
M = {y ∈ A : ϕ̃(σ(y∗y)) = 0} which, in particular, shows that M is closed.
(Indeed, every proper maximal Ideal is closed).

We therefore put a pre-Hilbert structure, 〈·, ·〉 on A/M by setting

〈x+M, y +M〉 := ϕ̃(σ(y∗x)).

Let H be the completion of A/M = (A/M, 〈·, ·〉), then the above left-regular
representation of A on A/M extends to a unitary representation π of A on H (cf.
J. Dixmier, [17] (2.4.4)). Since we may assume that ϕ̃ is a pure state (see R. V.
Kadison and J. R. Ringrose, [19], p. 213), we also know that π is topologically
irreducible (cf. R. V. Kadison and J. R. Ringrose, [19], (2.5)). �

It follows from the above result that a quasi-symmetric Fréchet algebra A has
sufficiently many algebraically irreducible (unitary) representations. This allows
the use (2.2.9) (i.) of C. E. Rickart, [20], to define members of Prim(A) which
leads to the discussion of the hull-minimal Ideals.

In order to then state the major result of this section we put the notion of (3.2)
in the proper form in which it is needed.

3.9 Definition. An involutive Fréchet algebra A is said to be polynomially
bounded if the set A0 of self-adjoint polynomially bounded elements of A is dense
in the real subspace An of hermitian elements of A.

We note here that an involutive Schwartz algebra is automatically a polyno-
mially bounded Fréchet algebra. In particular the family of algebras given in
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(3.4) as Cp(G//K) is a family of polynomially bounded Fréchet algebras. We
now give a generalisation of (1.10) in J. Ludwig ([8], p. 81), to a semi-simple
quasi-symmetric polynomially bounded Fréchet algebra. This result is the first
major result of this section of the work. It assures us that there is a reasonable
framework for the study of the hull-minimal Ideals in a Fréchet algebra.

3.10 Theorem. Every semi-simple quasi-symmetric polynomially bounded
Fréchet algebra is hull-kernel regular.

Proof. Let A be a semi-simple quasi-symmetric polynomially bounded Fréchet
algebra, then by (3.8) for every J ∈ Prim(A) (which is of the form J = kernel
of an algebraically irreducible representation of A) there exists a topologically
irreducible unitary representation (πJ ,HJ) of A such that ker(πJ) = J.

Now let C be any closed subset of Prim(A) and fix J ∈ Prim(A)\C we need
to show that there are aJ , bJ ∈ A in which

(i.) bJ ∈
⋂
J ′∈C

J ′(=: ker(C)), aJ /∈ J, and

(ii.) bJ · aJ = aJ .

Since C is closed there exists u ∈ A such that

u ∈ ker(C)

(
=
⋂
J ′∈C

J ′

)
and u 6∈ J. Equivalently, πJ ′(u∗u) = 0 for every J ′ ∈ C and πJ(u∗u) 6= 0,
respectively. By unitarity of πJ ′ it is possible, after multiplying v := u∗u with
a positive constant, to have ‖πJ(v)‖op = 1. Clearly v ∈ Ah as v∗ = v. Also by
the continuity of the *-homomorphism σ (as in (3.4)) we have that there exist a
continuous seminorm p on A such that ‖σ(a)‖C ≤ p(a), for all a ∈ A. Thus for
any unitary representation π of A we have ‖π(a)‖op ≤ ‖σ(a)‖C ≤ p(a), a ∈ A.

As A0 is dense in An we can choose a0 ∈ A0 such that for

p(a0 − v) < 1/m, m = 2, 3, 4, . . . ,

and real C∞-functions ϕ, ψ such that ψ vanishes in a neighbourhood Nψ of[
− 2

m
,

2

m

]
, ϕ = 1 on

[
1− 1

m
, 1 +

1

m

]
and ψ ·ϕ = ϕ. If we now set bJ = ψ{a0}

and aJ = ϕ{a0}, we have, by the functional calculus on semi-simple A, that
ψ{a0} ·ϕ{a0} = ϕ{a0} (cf. (3.7)). i.e., bJ · aJ = aJ , as required in (ii.) above.

To now verify (i.) we note that

‖πJ ′(a0)‖op = ‖πJ ′(a0 − v)‖op (since πJ ′(v) = πJ ′(u∗u) = 0, for every J ′ ∈ C)

≤ p(a0 − v)

≤ 1

m
,

which shows clearly that πJ ′(a0) ∈ Nψ. Thus

ψ(πJ ′(a0)) = 0. i.e., πJ ′(ψ{a0}) = 0
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implying that πJ ′(bJ) = 0. i.e., bJ ∈ ker(πJ ′) = J ′. In short, bJ ∈ J ′ for each

J ′ ∈ C. i.e., bJ ∈
⋂
J ′∈C

J ′ = ker(C), as required. Also

|‖πJ(a0)‖op − 1| = |‖πJ(a0)‖op − ‖πJ(v)‖op|
≤ ‖πJ(a0)− πJ(v)‖op (by continuity of ‖ · ‖op)
= ‖πJ(a0 − v)‖op ≤ p(a0 − v) ≤ 1/m, m = 2, 3, 4, . . . ;

implying that

1− 1

m
≤ ‖πJ(a0)‖op ≤ 1 +

1

m
.

i.e., ϕ(πJ(a0)) 6= 0. Thus

πJ(aJ) = πJ(ϕ{a0}) = ϕ(πJ(a0)) 6= 0. i.e., aJ /∈ ker(πJ) = J. �

3.11 Corollary. LetA be a semi-simple quasi-symmetric polynomially bounded
Fréchet algebra and let C be a closed subset of Prim(A). Then the hull-minimal
Ideal, j(C), exists and is generated by the elements aJ , J /∈ C.

Proof. The proof follows if we combine Lemma 3.11 with Theorem 2.3 con-
tained in U. N. Bassey and O. O. Oyadare ([5]) (or with Theorem 4.2.20 of O.
O. Oyadare [10],. �

Lemma 3.8, Theorem 3.10 and Corollary 3.11 hold in particular for the Harish-
Chandra-type algebras A = Cp(G) studied in O. O. Oyadare ([12] and [13]).

The last result is an improvement on (1.10) of J. Ludwig [8] as afforded by the
general notion of quasi-symmetricity introduced in (4.3.5)(3.) above. We refer
to U. N. Bassey and O. O. Oyadare [5], as well as O. O. Oyadare [10], for the
explicit structure of the basis elements, aJ , of (type-I) hull-minimal ideals in the
quasi-symmetric polynomially bounded Fréchet algebras, Cp(G), of a (connected)
semi-simple G.

4. Conclusion

We have been able to give a generalization of the notion of a symmetric algebra
to that of a quasi-symmetric and establish the importance of this generalization by
showing that every semi-simple quasi-symmetric polynomially bounded Fréchet
algebra is still hull-kernel regular. An immediate application of our results is
to the Harish-Chandra Schwartz Fréchet algebras, Cp(G), of a (connected) semi-
simple G.
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