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ABSTRACT.   In this paper, the Laplace-Adomian decomposition 

method (LADM) is applied in obtaining numerical solutions to 

partial integro-differential equations. In order to verify the accuracy 

and efficiency of the LADM, the numerical results generated are 

compared with the variational iteration method and differential 

transform method. The comparison with the above methods shows 

that the LADM achieves better accuracy than the others.  

 

1. INTRODUCTION 

Various physical phenomena can be modeled by ordinary/partial differential equations. 

The differential operator (ordinary or partial) does not help in modeling some properties 

such as memory and hereditary properties due to the local nature of the differential 

operator. Amongst the best remedies to overcome such drawback is to introduce integral 

term to the model. The differential equation along with the integral of unknown function 

gives rise to an integro-differential equation (IDE) or a partial integro-differential 

equation (PIDE) [1-4]. 
 

Literature Review. Partial integro-differential equation has been applied in various 

fields. In [5] the variational iteration method (VIM) was applied to solve PIDEs arising 

heat conduction of materials with memory and viscoelasticity. In [6] the two-

dimensional transform method was also applied to obtain the approximate solution of 

PIDEs with convolution kernel which occur naturally in various field of science and 

engineering.         

The Laplace-Adomian decomposition method (LADM) has shown to be an efficient 

method, due to the fact that it is a hybrid technique developed by the combination of 

two well-known methods namely Laplace transform method and Adomian 

decomposition method. It has been successfully applied to approximate the third order 

Dispersive Fractional Partial Differential Equation, General fisher’s Equation and so on 

[7-10]. 
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In this research, we apply the Laplace–Adomian decomposition method to Partial 

integro-differential equations and obtain their approximate exact solutions. Since the 

method has shown to be very effective and powerful for solving various kinds of linear 

and nonlinear ordinary and partial differential equations. 
 

2. MATERIALS AND METHODS 

 

2.1 Partial Differential Equation using LADM 

In this section we will discuss the basic concept of Laplace-Adomian Decomposition 

Method (LADM) as developed in [11]. We consider the following general differential 

equation 

𝐿𝑢(𝑥, 𝑡) +  𝑁𝑢(𝑥, 𝑡) +  𝑅𝑢(𝑥, 𝑡) =  𝑔                                                                      (2.1)                                                                   

with initial condition  

      u(x, t) =  f(x)                                                                                                            (2.2)                                                                                                   

where 𝐿 is the linear deferential operator of higher order which is easily invertible, u is 

an unknown function, 𝑁 is the nonlinear operator, 𝑅 is the remaining linear part and 𝑔 

is any given function. 

The method consists of first applying the Laplace transform to both sides of equation 

(2.1)  

ℒ[𝐿𝑢(𝑥, 𝑡)] +  ℒ[𝑁𝑢(𝑥, 𝑡)] +  ℒ[𝑅𝑢(𝑥, 𝑡)] =  ℒ[𝑔].                                            (2.3)              

Using the differentiation property of Laplace transform and applying the initial 

condition in equation (2.2) we get :                               

ℒ[𝑢] =  
𝑓(𝑥)

𝑠
+  

1

𝑠
ℒ[𝑔] −  

1

𝑠
ℒ[𝑁𝑢] −  

1

𝑠
ℒ[𝑅𝑢].                                                        (2.4)                                                          

The LADM defines the solution u(x, t) by the infinite series  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛
∞
𝑛=0                                                                                                         (2.5)                                                                                                                        

The nonlinear term 𝑁 is usually represented by an infinite series of the Adomian 

polynomials   

𝑁(𝑥, 𝑡) = ∑ 𝐴𝑛
∞
𝑛=0                                                                                                       (2.6)                                                                                             

Where 𝐴𝑛 is defined thus  

𝐴𝑛 =  
1

𝑛!
[

𝑑𝑛

𝑑𝜆𝑛
[𝑁 ∑ (𝜆𝑖𝑢𝑖)]]𝜆=0

∞
𝑖=0                                                                           (2.7)                                                                                 
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Substituting (5) and (6) into (4), gives  

ℒ[∑ 𝑢𝑛
∞
𝑛=0 ] =  

𝑓(𝑥)

𝑠
+  

1

𝑠
ℒ[𝑔] −  

1

𝑠
ℒ[∑ 𝐴𝑛

∞
𝑛=0 ] −  

1

𝑠
ℒ[𝑅(∑ 𝑢𝑛

∞
𝑛=0 )]                     (2.8)                                  

Applying the linearity of the Laplace transform, we can define the following recursive 

formula:  

ℒ[𝑢0] =  
𝑓(𝑥)

𝑠
+  

1

𝑠
ℒ[𝑔]                                                                                                  (2.9)                                                                                             

ℒ[𝑢1] =  − 
1

𝑠
ℒ[𝑅(𝑢0) −  

1

𝑠
ℒ[𝐴0]                                                                             (2.10) 

ℒ[𝑢2] =  − 
1

𝑠
ℒ[𝑅(𝑢1) −  

1

𝑠
ℒ[𝐴1]                                                                             (2.11) 

ℒ[𝑢3] =  − 
1

𝑠
ℒ[𝑅(𝑢2) −  

1

𝑠
ℒ[𝐴2]                                                                               (2.12)                                                                       

In general, for 𝑛 ≥  0, the recursive relations are given by  

ℒ[𝑢𝑛+1] =  −
1

𝑠
ℒ[𝑅(𝑢𝑛)] −  

1

𝑠
ℒ[𝐴𝑛]                                                                        (2.13)                                                                           

Applying the inverse Laplace transform, we can evaluate 𝑢𝑛 and get the solution of the 

infinite series as  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

𝑘

𝑛=0

(𝑥, 𝑡)                                                                                                 (2.14) 

                                                                             

where  

lim
𝑘→∞

∑ 𝑢𝑛

𝑘

𝑛=0

(𝑥, 0) = 𝑢(𝑥, 𝑡)                                                                                                 

 

2.2 Partial Integro Differential equation (PIDE) [6]  

The general form of PIDE with convolution kernel is,  

∑ 𝑎𝑖

𝑚

𝑖=1

(
𝜕𝑖𝑢

𝜕𝑥𝑖
) + ∑ 𝑏𝑖

𝑛

𝑖=1

(
𝜕𝑖𝑢

𝜕𝑡𝑖
) + 𝑐𝑢(𝑥, 𝑡) +  ∑ 𝑑𝑖

𝑟

𝑖=1

∫ 𝐾𝑖

𝑡

0

(𝑡 − 𝑦) (
𝜕𝑖𝑢

𝜕𝑥𝑖
) 𝑑𝑦 + 𝑓(𝑥, 𝑡) = 0 

(With prescribed conditions) 
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where 𝑎𝑖 , 𝑏𝑖 , 𝑐 and 𝑑𝑖  are constant or the function of 𝑥 alone. And 𝑓(𝑥, 𝑡), 𝐾𝑖(𝑡 − 𝑦) are 

known functions. 

2.3 Solution to Partial Integro Differential equations using LADM  

Consider the following partial integro differential equations of the second kind given 

by  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢(𝑠)) + 𝑁(𝑢(𝑠))]𝑑𝑠, 𝜆 ≠ 0                                (2.15) 

 Where 𝑓(𝑥)  is a given function, 𝜆 is a parameter, 𝑘(𝑥, 𝑡) is the Kernel, 𝐿(𝑢(𝑥)) and 

𝑁(𝑢(𝑥)) are linear and nonlinear operator respectively. Assume that the solution  

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)

∞

𝑛=0

                                                                                                           (2.16) 

and 

𝑁(𝑢(𝑥)) = ∑ 𝐴𝑛

∞

𝑛=0

                                                                                                        (2.17)  

Substitute equation (2.16) and (2.17) into (2.15) we get  

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

=  𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿 (∑ 𝑢𝑛(𝑥)

∞

𝑛=0

) + ∑ 𝐴𝑛

∞

𝑛=0

] 𝑑𝑠                               (2.18) 

This gives the following scheme  

𝑢0 = 𝑓(𝑥) 

𝑢1 = 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢0(𝑠)) + 𝐴0] 𝑑𝑠 

𝑢2 = 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢1(𝑠)) + 𝐴1] 𝑑𝑠 

𝑢𝑛+1 = 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢𝑛(𝑠)) + 𝐴𝑛] 𝑑𝑠 , 𝑛 = 0,1.2, …            
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2.3 Solution to Partial Integro Differential equations using LADM  

Consider the following partial integro differential equations of the second kind given 

by  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢(𝑠)) + 𝑁(𝑢(𝑠))]𝑑𝑠, 𝜆 ≠ 0                                    (2.15) 

 Where 𝑓(𝑥)  is a given function, 𝜆 is a parameter, 𝑘(𝑥, 𝑡) is the Kernel, 𝐿(𝑢(𝑥)) and 

𝑁(𝑢(𝑥)) are linear and nonlinear operator respectively. Assume that the solution  

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)

∞

𝑛=0

                                                                                                             (2.16) 

and 

𝑁(𝑢(𝑥)) = ∑ 𝐴𝑛

∞

𝑛=0

                                                                                                          (2.17)  

Substitute equation (2.16) and (2.17) into (2.15) we get  

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

=  𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿 (∑ 𝑢𝑛(𝑥)

∞

𝑛=0

) + ∑ 𝐴𝑛

∞

𝑛=0

] 𝑑𝑠                               (2.18) 

This gives the following scheme  

𝑢0 = 𝑓(𝑥) 

𝑢1 = 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢0(𝑠)) + 𝐴0] 𝑑𝑠 

𝑢2 = 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢1(𝑠)) + 𝐴1] 𝑑𝑠 

𝑢𝑛+1 = 𝜆 ∫ 𝑘(𝑠, 𝑡)

𝑥

𝑎

[𝐿(𝑢𝑛(𝑠)) + 𝐴𝑛] 𝑑𝑠 , 𝑛 = 0,1.2, …            
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3. RESULTS 

In this section the Laplace-Adomian decomposition method (LADM) is applied to solve 

some linear partial integro-differential equations. 

 
Example 1 
Consider the linear partial integro-differential equation 

𝑢𝑡𝑡 = 𝑢𝑥 + 2 ∫ (𝑡 − 𝑠)
𝑡

0

𝑢(𝑥, 𝑠)𝑑𝑠 − 2𝑒𝑥                                                                       (3.1) 

With initial conditions 
𝑢(𝑥, 0) = 𝑒𝑥  , 𝑢𝑡(𝑥, 0) = 0                                                                                               (3.2) 
Taking the Laplace transform of equation (3.1) we have  
𝑠2𝑈(𝑥, 𝑡) − 𝑠𝑢(𝑥, 0) − 𝑢𝑡(𝑥, 0)

= ℒ(𝑢𝑥) + ℒ (2𝑡 ∫ 𝑢(𝑥, 𝑠)𝑑𝑠
𝑡

0

− 2 ∫ 𝑠𝑢(𝑥, 𝑠)𝑑𝑠
𝑡

0

− 2𝑒𝑥)               (3.3) 

 Applying initial condition in equation (3.2) to (3.3) respectively we have 

ℒ(𝑈) =
𝑒𝑥

𝑠
+

1

𝑠2
ℒ(𝑢𝑥) +

1

𝑠2
ℒ (2𝑡 ∫ 𝑢(𝑥, 𝑠)𝑑𝑠

𝑡

0

− 2 ∫ 𝑠𝑢(𝑥, 𝑠)𝑑𝑠
𝑡

0

) −
2𝑒𝑥

𝑠3
         (3.4) 

Taking the Laplace inverse of equation (3.4) we get  

𝑢(𝑥, 𝑡) = 𝑒𝑥 − 𝑒𝑥𝑡2 + ℒ−1 (
1

𝑠2
ℒ(𝑢𝑥))

+ ℒ−1 (
1

𝑠2
ℒ (2𝑡 ∫ 𝑢(𝑥, 𝑠)𝑑𝑠

𝑡

0

− 2 ∫ 𝑠𝑢(𝑥, 𝑠)𝑑𝑠
𝑡

0

))                         (3.5) 

Taking the finite series of equation (3.5) where  

∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)       

∞

𝑛=0

 

Therefore,  

∑ 𝑢𝑛(𝑥, 𝑡) = 𝑒𝑥 − 𝑒𝑥𝑡2    

∞

𝑛=0

+  ℒ−1 (
1

𝑠2
ℒ (∑ 𝑢𝑛𝑥

∞

𝑛=0

))

+  ℒ−1 (
1

𝑠2
ℒ (2𝑡 ∫ ∑ 𝑢(𝑥, 𝑠)𝑑𝑠

∞

𝑛=0

𝑡

0

− 2 ∫ 𝑠 ∑ 𝑢(𝑥, 𝑠)𝑑𝑠

∞

𝑛=0

𝑡

0

))         (3.6) 

From equation (3.6) above we deduced the following recursive formula 
𝑢0 = 𝑒𝑥 − 𝑒𝑥𝑡2 
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𝑢𝑛+1 = ℒ−1 (
1

𝑠2
ℒ(𝑢𝑛𝑥

)) +  ℒ−1 (
1

𝑠2
ℒ (2𝑡 ∫ 𝑢𝑛(𝑥, 𝑠)𝑑𝑠

𝑡

0

− 2 ∫ 𝑠𝑢𝑛(𝑥, 𝑠)𝑑𝑠
𝑡

0

)) ,

𝑛 ≥ 0                                                                                                                  (3.7)   
where  

 𝑢𝑛𝑥
=

𝜕

𝜕𝑥
(𝑢𝑛).  

Now we express the above recursive formula as follow: 
𝑢0 = 𝑒𝑥 − 𝑒𝑥𝑡2 

𝑢1 =
𝑒𝑥𝑡2

2!
−

𝑒𝑥𝑡6

180
 

𝑢2 =
𝑒𝑥𝑡4

4!
−

4𝑒𝑥𝑡8

8!
+

𝑒𝑥𝑡6

360
−

8𝑒𝑥𝑡10

10!
 

𝑢3 =
𝑒𝑥𝑡6

6!
+

4𝑒𝑥𝑡8

8!
−

16𝑒𝑥𝑡14

14!
 

Similarly, we can find other components. Using equation (3.7), the series solution is 

therefore given by  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢0 + 𝑢1 + 𝑢2 + ⋯              

𝑢(𝑥, 𝑡) = 𝑒𝑥 − 𝑒𝑥𝑡2 +
𝑒𝑥𝑡2

2!
−

𝑒𝑥𝑡6

180
+

𝑒𝑥𝑡4

4!
−

4𝑒𝑥𝑡8

8!
+

𝑒𝑥𝑡6

360
−

8𝑒𝑥𝑡10

10!
+

𝑒𝑥𝑡6

6!

+
4𝑒𝑥𝑡8

8!
−

16𝑒𝑥𝑡14

14!
+ ⋯ 

               = 𝑒𝑥 −
𝑒𝑥𝑡2

2!
+

𝑒𝑥𝑡4

4!
−

𝑒𝑥𝑡6

6!
+ ⋯ 

 
Which converges to  
𝑢(𝑥, 𝑡) = 𝑒𝑥𝑐𝑜𝑠𝑡  
 
Example 2 
Consider the linear partial integro-differential equation 

𝑢𝑡 = −𝑥2𝑡 + ∫ (𝑦𝑡 + 𝑢)𝑑𝑦
𝑡

0

                                                                                    (3.8) 

 With initial conditions 
𝑢(𝑥, 0) = 1                                                                                                                    (3.9) 
Taking the Laplace transform of equation (3.8) we have  

𝑠𝑢(𝑥, 𝑡) − 𝑢(𝑥, 0) =
−𝑥2

𝑠2
+ ℒ (

𝑥2𝑡

2
) + ℒ (∫ 𝑢

𝑥

0

𝑑𝑦)                                       (3.10) 

 Applying initial condition in equation (3.9) to (3.10) we have 

ℒ(𝑢) =
1

𝑠
−

𝑥2

𝑠3
+

𝑥2

2𝑠3
+

1

𝑠
ℒ (∫ 𝑢

𝑥

0

𝑑𝑦)                                                                (3.11) 

Taking the Laplace inverse of equation (3.11) we get  
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𝑢(𝑥, 𝑡) = 1 −
𝑥2𝑡2

2!
+

𝑥2𝑡2

4
+ ℒ−1 ( 

1

𝑠
ℒ (∫ 𝑢

𝑥

0

𝑑𝑦))                                        (3.12) 

Taking the finite series of equation (3.12) where  

∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)       

∞

𝑛=0

 

Therefore,  

∑ 𝑢𝑛(𝑥, 𝑡) = 1 −
𝑥2𝑡2

2!
+

𝑥2𝑡2

4
+ ℒ−1 ( 

1

𝑠
ℒ (∫ ∑ 𝑢

∞

𝑛=0

𝑥

0

𝑑𝑦))    

∞

𝑛=0

                  (3.13) 

From equation (3.13) above we deduced the following recursive formula 

𝑢0 = 1 −
𝑥2𝑡2

4
  

𝑢𝑛+1 = ℒ−1 (
1

𝑆
ℒ(∫ 𝑢𝑛

𝑥

0
𝑑𝑦)) 𝑛 ≥ 0                                                                       (3.14)   

Now we express the above recursive formula as follow: 

𝑢0 = 1 −
𝑥2𝑡2

4
 

𝑢1 = 𝑥𝑡 −
𝑥3𝑡3

36
 

𝑢2 =
𝑥2𝑡2

4
−

𝑥4𝑡4

576
 

𝑢3 =
𝑥3𝑡3

36
−

𝑥5𝑡5

14400
 

… 

Similarly, we can find other components. Using equation (3.14), the series solution is 

therefore given by  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢0 + 𝑢1 + 𝑢2 + ⋯              

𝑢(𝑥, 𝑡) = 1 −
𝑥2𝑡2

4
+ 𝑥𝑡 −

𝑥3𝑡3

36
+

𝑥2𝑡2

4
−

𝑥4𝑡4

576
+

𝑥3𝑡3

36
−

𝑥5𝑡5

14400
+ ⋯ 

Which converges to  
𝑢(𝑥, 𝑡) = 1 + 𝑥𝑡 
 

 

4. DISCUSSION 

Partial integro-differential equations (PIDE) are used in modelling physical 

phenomena in sciences and engineering. In this work, the Laplace-Adomian 

Decomposition Method (LADM) was used in obtaining the series solution of partial 

integro-differential equations and comparisons were carried out as follows  
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Table 1. Comparison of numerical solutions for Example 1 

  X 

t 

0.2 

LADM                         DTM 

0.4 

LADM                         DTM 

0.01 2.0000 × 10−9 4.1276
× 10−4 

2.0000 × 10−9 4.1757 × 10−4 

0.02 1.1000 × 10−7 1.6001
× 10−3 

1.6400 × 10−7 1.6168 × 10−3 

0.03 1.2460 × 10−6 3.4096
× 10−3 

1.5210 × 10−6 3.4348 × 10−3 

0.04 7.0480 × 10−6 5.5897
× 10−3 

8.6090 × 10−6 5.6028 × 10−3 

0.05 2.7100 × 10−5 7.7918
× 10−3 

3.3100 × 10−5 7.7500 × 10−3 

Table 2. Comparison of numerical solutions for Example 2 

  X 

t 

0.25 

LADM                         VIM 

0.50 

LADM                         VIM 

0.01 1.0000 × 10−9 3.1267
× 10−2 

1.1000 × 10−8 6.2570 × 10−2 

0.02 1.1000 × 10−8 6.2570
× 10−2 

1.7500 × 10−7 1.2528 × 10−1 

0.03 5.5000 × 10−8 9.3907
× 10−2 

8.8400 × 10−7 1.8813 × 10−1 

0.04 1.7500 × 10−7 1.2528
× 10−1 

2.8000 × 10−6 2.5113 × 10−1 

0.05 4.2600 × 10−7 1.5669
× 10−1 

6.8500 × 10−6 3.1426 × 10−1 
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5. CONCLUSION 

The Laplace Adomian decomposition method was applied to two examples and it 

presents a more useful, accurate and efficient way to develop a semi-analytical solution 

when compared to some other semi-analytical methods. In addition, the LADM does 

not involve perturbation and linearization. The method can be applied to other types of 

PIDEs with initial condition. 
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