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ABSTRACT. This article focused on the use of generalized Gamma distribution as 

conjugate prior with Poisson and generalized Poisson likelihoods to handle dispersion 

in small samples. Based on this conjugacy, Poisson-Generalized Gamma model (PGG) 

and Generalized Poisson-Generalized Gamma model (GPGG) are developed for 

Bayesian disease mapping and compared with the existing Poisson-Gamma model. 

The efficiency of these models was investigated using both simulated and real data 

applications. The deviance information criterion (DIC), dispersion test (DT), Monte 

Carlo error (MCE) and relative efficiency (reff) were used for comparison. All indicated 

that GPGG model provided the best precision and model efficiency to handle 

dispersion and relative risk estimation for disease mapping in small and large samples 

under uncontaminated and contaminated data. Thus, GPGG and PGG models served 

as alternative models in providing reliable mapping of disease.  

1. INTRODUCTION 
 

Disease mapping was derived from Clayton and Kaldor (1987), and defined as the 

investigation, estimation and visual representation of summary measures of health 

incidences across related regions. Disease mapping is mainly used for explanatory 

purposes, to survey high-risk areas and to help policy making and implementation (Koch, 

2005). As discussed in Meza (2003), application of Empirical Bayes (EB) methods to 

improve relative risk estimation efficiency is becoming popular since the frequentist 

approaches are not fully satisfactory. Casella (1985) and Efron (1996) provided good 

introductions to EB methods. Adeleke et al. (2009), Mbata et al. (2010), Okafor et al. 

(2010), Okafor and Mbata (2012), Zou et al. (2018) provided good applications of EB 

methods. The hallmark of EB analysis is that it has the capacity to remove the random 

variability which is present in data from small population counts (Böhning et al., 2000) as 

well as the capacity to combine independent but related studies. 
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1.1. Literature Review. EB concept was first introduced by Robbins (1955), which employed 

the Thomas Bayes theory of 1740, in a non-parametric setting. But subsequent research 

developments by Morris (1983) have introduced parametric models; which the present study 

is based-on. Bayes techniques for mortality rates were introduced by Manton et al. (1981). 

However, a well-known EB model for disease mapping was introduced by Clayton and Kaldor 

(1987). Other EB models for disease mapping included the work of Azzalini (1985) which 

introduced Poisson-Normal (PN) model. As discussed in Militino et al. (2001), PN model is 

not a natural conjugate model. Clayton and Kaldor (1987) introduced Poisson-Lognormal 

model, which has potential for multicollinearity problem (Lawson, 2013).The Poisson-

conditional autoregressive model (P-CAR) was first introduced by Besag (1974) and the Bayes 

disease-mapping models based on P-CAR was studied by Clayton and Kaldor (1987, 1989), 

Cressie and Chan (1989), Besag et al. (1991). Modifications of P-CAR model were carried out 

by Besag et al. (1991) popular called the BYM models. However, the P-CAR models have 

potential for multicollinearity problem (Lawson, 2013). 

 

Meanwhile, the use of Poisson-Gamma (PG) model, as suggested by Clayton and Kaldor 

(1987), is the widely used EB model in disease mapping. Other notable works that used PG 

model in disease mapping include: Lord (2006), Lawson (2013), Clement (2014), Srinivasan 

and Venkatesan (2014), Mbata et al. (2018). According to Lord (2006), for point data 

estimation, PG model is usually preferred over other models because it offers a simple way of 

accommodating over-dispersion which usually features in disease mapping. But one major 

problem of PG modelas discussed in Lord and Geedipally (2016) and Famoye et al. (2011) is 

theincapability to address under-dispersion, and to handle over-dispersion in small samples. To 

resolve the problems inherent in the use of PG model, the present article is proposing using 

generalized Gamma (GG) distribution as prior with Poisson and generalized Poisson (GP) 

likelihoods. The efficiency of these models in handling dispersion is investigated under 

contaminated data for small and large samples. Conjugation of Generalized Gamma 

distribution with Poisson likelihood has been carried out by Mbata et al. (2018). However, the 

conjugation of Generalized Gamma distribution with Generalized Poisson likelihood has not 

been investigated in the literature, hence the motivation for this study. The study will deepen 

knowledge in Bayesian disease mapping for credible health risk assessment and management, 

and aid practitioners in epidemiology and Bio-medical fields. 
 

The PGG model and the proposed GPG G model are based on the assumption that incidence 

of disease is being investigated in a population that is partitioned into K subpopulations or 

regions and each subpopulation (region) observed count assumes to follow a Poisson or 

Generalized Poisson (GP) distribution with unknown relative risk parameter which is assigned 

a GG distribution as prior. Hence, inference about the unknown parameter (relative risks) is 

generated empirically using the derived posterior distribution. A detailed Bayes theorem is 

found in Box and Tiao (1973). 
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2. MATERIALS AND METHODS 

2.1 EB Modeling of Generalized Gamma (GG) Distribution with Generalized Poisson 

(GP) Likelihood 

Definition 2.1.For EB disease mapping models: let 𝒀𝒊beobserved number of cases of disease 

in region 𝑖 (𝑖 = 1, . . . , 𝐾) , let  𝑬𝒊 beexpected number of cases of disease in region 

𝑖 (𝑖 = 1, . . . , 𝐾), let𝑵𝒊benumber of persons at risk for disease in region 𝑖 (𝑖 = 1, . . . , 𝐾), let 𝜽𝒊 

bemaximum likelihood estimate of relative risk of disease in region 𝑖 (𝑖 = 1, . . . , 𝐾), and 

let𝜽̃𝒊bePosterior estimatesof relative risk of disease in region 𝑖 (𝑖 = 1, . . . , 𝐾).𝒀𝒊 are observed 

random variables in region  𝑖,  while 𝑬𝒊  are known functions of  𝑵𝒊 . Hence, 𝑬𝒊 = 𝑵𝒊𝒓̅ =

 𝑵𝒊 (
∑ 𝒀𝒊

𝒌
𝒊=𝟏

∑ 𝑵𝒊
𝒌
𝒊=𝟏

) while estimated𝜽𝒊 is 𝜽𝑖 =  
𝒀𝒊

𝑬𝒊
(𝑡ℎ𝑢𝑠 𝒀𝑖 =  𝑬𝒊𝜽𝒊). 𝒓̅is the totalrisk of disease in the 

whole study region (called internal standardization (IS)). 

 

Based on Bayes’ Theorem, Generalized Poisson-Generalized Gamma (GPGG) model is 

presented for disease mapping. 

Definition 2.2.Let  

𝑌𝑖|𝜃𝑖 , 𝜔 ~ 𝐺𝑃(𝐸𝑖𝜃𝑖 , 𝜔), and 

𝜃𝑖|𝛼, 𝛽, 𝜆 ~ 𝐺𝐺(𝛼, 𝛽, 𝜆). 
Therefore, the posterior distribution is described as 

𝑝(𝜃̃𝑖|𝑌𝑖, 𝛼, 𝛽, 𝜔, 𝜆) =  
𝑙(𝜃𝑖|𝑌𝑖, 𝜔) 𝑝(𝜃𝑖|𝛼, 𝛽, 𝜆)

∫ 𝑙(𝜃𝑖|𝑌𝑖, 𝜔) 𝑝(𝜃𝑖|𝛼, 𝛽, 𝜆)𝑑𝜃
∞

0

 ∝  𝑙(𝜃𝑖|𝑌𝑖, 𝜔) 𝑝(𝜃𝑖|𝛼, 𝛽, 𝜆).  

 (2.1) 

Where; the likelihood function is obtained from the pmf of GP distribution presented by Consul 

and Jain (1973) further studied by Famoye (2010). The re-parameterization with rate parameter 

𝜂𝑖 = 𝜖𝑖𝜃, gives 

𝑝(𝑌𝑖|𝜃𝑖 , 𝜔) =  
𝜖𝑖𝜃(𝜖𝑖𝜃+ 𝜔𝑦)𝑦−1

𝑦!
𝑒−(𝜖𝑖𝜃+ 𝜔𝑦), 𝑦 ≥ 0, 𝜃 > 0. max (−1, −

𝜃

4
) ≤ 𝜔 ≤ 1. 

The GP likelihood ignoring factors that are free of 𝜃 is jointly given as  

𝑙(𝜃𝑖|𝑌𝑖, 𝜔) =  ∏
𝜖𝑖𝜃

𝑦𝑖!
(𝜖𝑖𝜃 + 𝜔𝑦𝑖)𝑦𝑖−1𝑒− (𝜖𝑖𝜃+𝜔𝑦𝑖)𝑛

𝑖=1  ∝  𝜃𝑛𝑒− (𝜃 ∑ 𝜖𝑖+ 𝜔 ∑ 𝑦𝑖) ∏ (𝜖𝑖𝜃 +𝑛
𝑖=1

𝜔𝑦𝑖)
𝑦𝑖−1 

𝑙(𝜃𝑖|𝑌𝑖, 𝜔) ∝  𝜃𝑛𝑒− (𝐸𝜃+ 𝜔𝑌) ∏(𝜖𝑖𝜃 + 𝜔𝑦𝑖)
𝑦𝑖−1

𝑛

𝑖=1

 

𝑠𝑖𝑛𝑐𝑒 ∏ (𝜖𝑖 + 𝛽𝑦𝑖)
𝑦𝑖−1𝑛

𝑖=1 is free of 𝜃 and using the transformation 𝜔 = 𝛽𝜃, thus 

𝑙(𝜃𝑖|𝑌𝑖, 𝜔) ∝  𝜃𝑌𝑒− (𝐸+ 𝛽𝑌)𝜃,          (2.2) 

where, 𝑌 =  ∑ 𝑦𝑖
𝑛
𝑖=1  is the sufficient statistic, and  𝐸 =  ∑ 𝜖𝑖

𝑛
𝑖=1  is the random effect. 

The prior distribution is the Generalized Gamma distribution (GG) given by Stacy (1962) as  
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𝑝(𝜃𝑖|𝛼, 𝛽, 𝜆) =  
𝜆𝛽𝛼𝜆

Γ(𝛼)
𝜃𝛼𝜆−1𝑒−(𝛽𝜃)𝜆

, 𝛼, 𝛽, 𝜆, 𝜃 > 0.     (2.3) 

64            U. MBATA, I. ADELEKE AND K. ADEKEYE 

Where𝛼 and 𝜆 are the shape parameters and  𝛽 is the inverse scale parameter. 

Posterior involves plugging likelihood and prior; hence, the joint posterior resulted to 

𝑝(𝜃̃𝑖|𝑌𝑖, 𝛼, 𝛽, 𝜔, 𝜆) ∝  [𝜃𝑌𝑒− (𝐸+ 𝛽𝑌)𝜃] [
𝜆𝛽𝛼𝜆

Γ(𝛼)
𝜃𝛼𝜆−1𝑒−(𝛽𝜃)𝜆

]

=  
𝜆𝛽𝛼𝜆

Γ(𝛼)
𝜃𝑌+ 𝛼𝜆−1𝑒− ((𝐸+𝛽𝑌)𝜃+(𝛽𝜃)𝜆) 

By applying Binomial transformation for the𝑒− (𝐸+𝛽𝑌)𝜃 to factor out 𝜃, GPGG model is derived 

as 

𝑝(𝜃̃𝑖|𝑌𝑖, 𝛼, 𝛽, 𝜔𝜆) =
𝜆𝛽𝛼𝜆

Γ(𝛼)
𝑒− (𝛽𝜃)𝜆

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖𝜃𝑌+ 𝛼𝜆+𝑖−1∞

𝑖=0 ,  𝛼, 𝛽, 𝜆, 𝜃 > 0 (2.4) 

 

To obtain a proper posterior distribution of GPGG model, Equation (2.4) is multiplied with the 

constant of proportionality(𝑐).The constant of proportionality (𝑐) is the inverse of the marginal 

distribution (denominator) in Equation (2.1). So, the marginal distribution is derived as 

∫ 𝑙(𝜃𝑖|𝑌𝑖, 𝜔) 𝑝(𝜃𝑖|𝛼, 𝛽, 𝜆)𝑑𝜃

∞

0

=  ∫ ∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖

𝜆𝛽𝛼𝜆

Γ(𝛼)
𝜃𝑌+ 𝛼𝜆+𝑖−1𝑒− (𝛽𝜃)𝜆

∞

𝑖=0

𝑑𝜃

∞

0

 

=
𝜆𝛽𝛼𝜆

Γ(𝛼)
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖

∞

𝑖=0

∫ 𝜃𝑌+ 𝛼𝜆+𝑖−1𝑒− (𝛽𝜃)𝜆
𝑑𝜃

∞

0

 

Integrating by substitution: let 𝑊 =  (𝛽𝜃)𝜆  ⟹  𝜃 =  
𝑊

1
𝜆

𝛽
. 𝐻𝑒𝑛𝑐𝑒 𝑑𝜃 =  

𝑊
1
𝜆

−1

𝜆𝛽
𝑑𝑊, therefore 

𝑙(𝜃𝑖|𝑌𝑖, 𝜔) 𝑝(𝜃𝑖|𝛼, 𝛽, 𝜆)𝑑𝜃

=
𝜆𝛽𝛼𝜆

Γ(𝛼)
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖

∞

𝑖=0

∫ (
𝑊

1

𝜆

𝛽
)

𝑌+ 𝛼𝜆+𝑖−1

𝑒− W

∞

0

(
𝑊

1

𝜆
−1

𝜆𝛽
) 𝑑𝑊. 

Therefore, the marginal distribution is described as 

𝑀(𝑌𝑖|𝛼, 𝛽, 𝜔, 𝜆) =
1

Γ(𝛼)
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0
1

𝛽𝑌+𝑖
Γ (𝛼 + 

𝑌

𝜆
+

𝑖

𝜆
).   (2.5)              

Hence, the constant of proportionality is derived as 

𝑐 =  
1

1

Γ(𝛼)
∑

(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0
1

𝛽𝑌+𝑖Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)

=  
Γ(𝛼)

∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0
1

𝛽𝑌+𝑖Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)
   (2.6) 

Equations (2.4) and (2.6) are multiplied to obtain a proper posterior distribution of GPGG 

model derived as 
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𝑝(𝜃̃𝑖|𝑌𝑖. 𝛼, 𝛽, 𝜔, 𝜆) =  
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖𝛽𝑖∞

𝑖=0

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

𝜆𝛽𝑌+ 𝛼𝜆𝜃𝑌+ 𝛼𝜆+𝑖−1𝑒− (𝛽𝜃)𝜆
, 

𝛼, 𝛽, 𝜆, 𝜃 > 0∎         (2.7) 

 

To proof that the obtained expression in Equation (2.7) is a pdf, we have Theorem 2.1.  

 

Theorem 2.1: Let𝜃̃𝑖~ 𝐺𝑃𝐺𝐺 𝑚𝑜𝑑𝑒𝑙, as in Equation (2.7), then 

∫ 𝑝(𝜃̃𝑖|𝑌𝑖, 𝛼, 𝛽, 𝜔, 𝜆)𝑑𝜃

∞

0

=  ∫
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖𝛽𝑖∞

𝑖=0

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

𝜆𝛽𝑌+ 𝛼𝜆𝜃𝑌+ 𝛼𝜆+𝑖−1𝑒− (𝛽𝜃)𝜆
𝑑𝜃

∞

0

= 1 

Proof: GPGG model integrates to unity 

Given 

𝑝(𝜃̃𝑖|𝑌𝑖, 𝛼, 𝛽, 𝜔, 𝜆) =  
𝑙(𝜃𝑖|𝑌𝑖, 𝜔)𝑃(𝜃𝑖|𝛼, 𝛽, 𝜆)

∫ 𝑙(𝜃𝑖|𝑌𝑖, 𝜔)𝑝(𝜃𝑖 |𝛼, 𝛽, 𝜆)𝑑𝜃
∞

0

=

∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖𝛽𝑖∞

𝑖=0

∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)

𝜆𝛽𝑌+ 𝛼𝜆𝜃𝑌+ 𝛼𝜆+𝑖−1𝑒− (𝛽𝜃)𝜆
. 

Considering the probability axiom∫ 𝑝(𝑥)𝑑𝑥
∞

−∞
= 1, therefore,  

∫ 𝑝(𝜃̃𝑖|𝑌𝑖;  𝛼, 𝛽, 𝜔, 𝜆)𝑑𝜃

∞

0

=  
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖𝛽𝑖∞

𝑖=0

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

∫ 𝜆𝛽𝑌+ 𝛼𝜆𝜃𝑌+ 𝛼𝜆+𝑖−1𝑒− (𝛽𝜃)𝜆
𝑑𝜃

∞

0

= 1 

Integrating by substitution: we have 

=
𝜆𝛽𝑌+ 𝛼𝜆 ∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖𝛽𝑖∞

𝑖=0

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

∫ (
𝑊

1

𝜆

𝛽
)

𝑌+ 𝛼𝜆+𝑖−1

𝑒− W

∞

0

(
𝑊

1

𝜆
−1

𝜆𝛽
) 𝑑𝑊 

=
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

∫ 𝑊𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
−1𝑒− W

∞

0

𝑑𝑊

=  
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

 = 1∎ 

Hence, the pdf of the GPGG distribution is a proper distribution. 
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Theorem 2.2: The rth Moment of GPGG Model is derived as  

𝐸(𝜃̃𝑟) =  
∑

(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑟

𝜆
+

𝑖

𝜆
)

𝛽𝑟 ∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)
       (2.8) 

Proof: Using the method of moment (MOM),  

𝐸(𝜃̃𝑟) =  
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 𝜆𝛽𝑌+ 𝛼𝜆+𝑖

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 +  
𝑌

𝜆
+

𝑖

𝜆
)

∫ 𝜃𝑌+ 𝛼𝜆+𝑟+𝑖−1𝑒−(𝛽𝜃)𝜆
𝑑𝜃.

∞

0

 

Applying integration by substitution, we have 

𝐸(𝜃̃𝑟) =
∑

(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 𝜆𝛽𝑌+ 𝛼𝜆+𝑖

∑
(−1)𝑖

𝑖!
(𝐸 + 𝛽𝑌)𝑖∞

𝑖=0 Γ (𝛼 + 
𝑌

𝜆
+

𝑖

𝜆
)

∫ (
𝑊

1

𝜆

𝛽
)

𝑌+ 𝛼𝜆+ 𝑟+𝑖 −1

𝑒− W

∞

0

(
𝑊

1

𝜆
−1

𝜆𝛽
) 𝑑𝑊 

𝐸(𝜃̃𝑟) =  
∑

(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑟

𝜆
+

𝑖

𝜆
)

𝛽𝑟 ∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)

∎ (The rth Moment of GPGG) 

The first moment and second moment are used to obtain the posterior expectation and the 

posterior variance respectively.As discussed in Mbata et al. (2018),the hyperparameters 

α and β  of the prior are obtained from GG model,to completely specify the posterior 

distribution. Therefore, when 𝜆 = 0.5, as 

𝛽̂ =  
α (𝛼+1)

μ
.          (2.9) 

𝛼̂ =  [ 6 (
𝜇2

𝜎2 −  
1

𝐾
) +  (

1

2
+  

2

𝐾
−

2𝜇2

𝜎2 )
2

]

1

2

−  (
1

2
+  

2

𝐾
−

2𝜇2

𝜎2 ).    (2.10) 

According to Marshall (1991), 𝜇 and 𝜎2are estimated as 

𝜇̂ =  
∑ 𝜃𝑖𝐸𝑖

𝑘
𝑖=1

∑ 𝐸𝑖
𝑘
𝑖=1

and 𝜎̂2 = 𝑆2 −   
𝜇̂

1

𝐾
∑ 𝐸𝑖

𝑘
𝐼=1

, where 𝑆2 =  
∑ 𝐸𝑖(𝜃̂𝑖− 𝜇̂)

2𝑘
𝑖=1

∑ 𝐸𝑖
𝑘
𝑖=1

. 

 

2.2Estimation of Relative Risk (RR) and Variance from GPGG Model 

From Equation (2.8), it follows that the estimation of relative risk (RR) in each Sub-population 

is obtained as  

𝜃̂̃𝑖
𝐺𝑃𝐺𝐺  =  

∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

1

𝜆
+

𝑖

𝜆
)

𝛽 ∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)
       (2.11) 

and the estimation of variance of relative risk (RR) in each sub-population is obtained as 

𝑉𝑎𝑟 (𝜃̂̃𝑖
𝐺𝑃𝐺𝐺) =  

∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

2

𝜆
+

𝑖

𝜆
)

𝛽2 ∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)

−   (
∑

(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

1

𝜆
+

𝑖

𝜆
)

𝛽 ∑
(−1)𝑖

𝑖!
(𝐸+𝛽𝑌)𝑖∞

𝑖=0 Γ(𝛼+ 
𝑌

𝜆
+

𝑖

𝜆
)

)

2

 (2.12) 
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𝑆𝐷 (𝜃̂̃𝑖
𝐺𝑃𝐺𝐺) = √𝑉𝑎𝑟 (𝜃̂̃𝑖

𝐺𝑃𝐺𝐺)       (2.13) 

 

2.3Performance Indicators for Model Comparison 

Beside the variance and standard deviations, the following indicators are employed for model 

comparison: Deviance Information Criterion (DIC), Dispersion Test with Adjusted Deviance 

(DT), Monte Carlo error (MCE) and Relative Efficiency (REFF). A good description of the 

performance indicators can be seen in Carlin and Louis (2009), Brooks and Gelman (1998), 

and Miller and Miller (2004). 

 

 

 

3.RESULTS 

The results of simulated and real data for GPGG model for disease mapping are 

presented in this section. The obtained results were compared to PGG and PG model to 

investigate the precision and efficiency of the EB models in handling dispersion and in relative 

risk parameter estimation for disease mapping under uncontaminated and contaminated data. 

3.1 Simulation Study Results 

The examination of dispersion effect on the efficiency of the different EB models in the 

estimation of relative risk parameter under uncontaminated data (UD) and contaminated data 

(CD) for small and large samples is presented using simulated data. This is carried out through 

a simulation study of 100000 samples using MCMC sampling technique by OpenBUGS 

statistical software. In order to consider variation, the efficiency of the EB models is studied in 

different simulated sample sizes Y = 5, 10, 20, 50, 100, 200.The simulation results for prior 

estimates are displayed in Tables 3.1 and3.2 while Posterior estimates are presented in 

Tables3.3 and3.4.The relative efficiency is presented in Table 3.5. The corresponding 

diagnostic plots are presented in Figures 3.1 respectively. 

Table 3.1.Prior Estimates of Simulated Uncontaminated Data 
 Gamma Prior Generalized Gamma Prior  

Characteristics Sample 

Size 

(Y) 

𝝁 𝝈𝟐 𝜶 𝜷 𝜶 𝜷 𝝀 Nature of Data 

Small Size Data 5 5.00 16.0000 1.3625 0.2725 5.8479 8.0092 0.5 Over-Dispersed 

10 10.40 10.2666 10.4350 1.0033 42.2231 175.4821 0.5 Equi-Dispersed 

20 20.10 7.2526 55.6553 2.7689 223.1179 2487.7960 0.5 Under-

Dispersed 

Large Size Data 50 50.18 65.4159 38.4726 0.7666 154.3858 478.0662 0.5 Over-Dispersed 

100 100.16 100.1358 100.1742 1.0001 401.1951 1611.0100 0.5 Equi-Dispersed 

200 200.35 167.2337 240.0192 1.1979 960.5759 4610.2650 0.5 Under-

Dispersed 
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Table 3.2. Prior Estimates of Simulated Contaminated Data  
 Gamma Prior Generalized Gamma Prior  

Characteristics Sample 

Size 

(Y) 

𝝁 𝝈𝟐 𝜶 𝜷 𝜶 𝜷 𝝀 Nature of 

Data 

Small Size Data 5 5.33 10.3333 2.5526 0.4786 10.6490 23.2594 0.5 Over-

Dispersed 

10 10.40 10.3000 10.4009 1.0001 42.0866 174.3630 0.5 Equi-

Dispersed 

20 20.16 7.9696 50.9801 2.5279 204.4168 2082.1800 0.5 Under-

Dispersed 

Large Size Data 50 50.32 87.0455 29.0751 0.5777 116.7944 273.3776 0.5 Over-

Dispersed 

100 100.28 100.1816 100.3703 1.0008 401.9795 1615.3570 0.5 Equi-

Dispersed 

200 200.02 156.3624 255.8821 1.2792 1024.0280 5247.5550 0.5 Under-

Dispersed 

 

The hyperparameters estimatesfor Gamma and Generalized Gamma priorsfrom the simulated 

uncontaminated data are presentedin Table 3.1 while contaminated data are presented in Table 

3.2. The simulation is based on different sample sizes based on the work of Lord (2006) and 𝝀 

fixed at 0.5. Sample sizes (5) and (50) are over dispersed, (10) and (100) are equi-dispersed 

while (20) and (200) are under dispersed.The prior estimates constitute the initial values for 

the MCMC sampling to generate the posterior estimates. The posterior results for 

uncontaminated data are presented in Table 3.3 while contaminated data are displayed in Table 

3.4. 

Table 3.3. Posterior Estimates of Simulated Uncontaminated Data 
EB MODELS EB MODELS 

Small Sample Size PG PGG GPGG Large Sample Size PG PGG GPGG 

5 𝜽̂̃ 1.2067 1.3338 1.0142 50 𝜽̂̃ 1.8134 2.1935 1.2077 

SD 0.7585 0.7414 0.4029 SD 0.1489 0.1436 0.0034 

DIC 27.03 26.07 16.09 DIC 1474.00 1469.00 1431.94 

DT 58.7912 26.8384 18.2796 DT 64.9753 62.9267 52.0265 

10 𝜽̂̃ 1.7941 2.0270 1.1515 100 𝜽̂̃ 1.9371 2.3802 1.2366 

SD 0.2856 0.2378 0.0189 SD 0.1019 0.0997 0.0090 

DIC 119.20 117.20 109.03 DIC 6236.00 6230.00 6208.45 

DT 22.5842 21.2059 20.8800 DT 129.5831 127.4570 115.1463 

20 𝜽̂̃ 1.8154 2.0968 1.0867 200 𝜽̂̃ 1.9692 2.4384 1.2443 

SD 0.1409 0.1145 0.0520 SD 0.0716 0.0708 0.0074 

DIC 633.00 568.90 418.00 DIC 24750.00 24590.00 23880.00 

DT 47.3289 41.2410 31.1526 DT 252.7179 248.4407 202.8271 
 

Table 3.4. Posterior Estimates of Simulated Contaminated Data 
EB MODELS EB MODELS 

Small Sample 

Size 

PG PGG GPGG Large Sample 

Size 

PG PGG GPGG 

5 𝜽̂̃ 3.8938 3.1116 1.1152 50 𝜽̂̃ 11.4262 4.5778 3.2558 

SD 2.8832 1.5717 0.3283 SD 19.2174 4.5433 0.1715 

DIC 17.26 16.56 13.33 DIC 1367.00 1347.00 1277.50 

DT 7.8189 7.3125 5.7184 DT 46.7686 43.3815 38.7420 

10 𝜽̂̃ 5.1548 3.3608 1.8630 100 𝜽̂̃ 12.7377 4.5271 3.2543 

SD 4.0601 1.9676 0.1979 SD 30.8777 6.1369 0.1547 

DIC 34.29 34.16 31.93 DIC 5577.00 5493.00 5295.00 

DT 5.3622 5.1225 4.9736 DT 103.3825 100.3256 84.6059 

20 𝜽̂̃ 6.6669 3.3235 3.0491 200 𝜽̂̃ 21.8779 5.6626 4.2616 

SD 6.5674 2.3172 0.1378 SD 59.9140 9.7534 0.1560 

DIC 273.10 244.20 153.75 DIC 21780.00 21730.00 21412.50 

DT 18.5591 16.7933 10.4923 DT 202.7292 200.0370 170.9675 
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Table 3.5.Relative Efficiency (REFF) of Posterior Estimates of Standard Deviations 
  Uncontaminated Data Contaminated Data 

Model Sample Size PG PGG GPGG PG PGG GPGG 

PG 

  

  

  

Small samples 

  

  

5 1    1     

10 1    1     

20 1    1     

Large Samples 

   

50 1    1     

100 1    1     

200 1    1     

PGG 

  

  

  

Small samples 

  

  

5 0.9775 1  0.5451 1   

10 0.8326 1  0.4846 1   

20 0.8126 1  0.3528 1   

Large Samples 

  

50 0.9644 1  0.2364 1   

100 0.9784 1  0.1987 1   

200 0.9888 1  0.1628 1   

GPGG 

  

  

  

Small samples 

  

  

5 0.5312 0.5434 1 0.1139 0.2089 1 

10 0.0662 0.0795 1 0.0487 0.1006 1 

20 0.3691 0.4541 1 0.0210 0.0595 1 

Large Samples 

  

50 0.0228 0.0237 1 0.0089 0.0377 1 

100 0.0883 0.0903 1 0.0050 0.0252 1 

200 0.1034 0.1045 1 0.0026 0.0160 1 
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Figure 3.1.Dynamic Trace Plot of Posterior Convergence of the Different EB Models for 

Small and Large Sample Sizes under uncontaminated data and contaminated data 
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3.2 Real-Life Application Study Results 
 

This section presents the application to real-life data to investigate model efficiency of the 

different EB models in relative risk estimation for disease mapping under different data 

conditions such as uncontaminated data (UD) and contaminated data (CD). This is achieved by 

using people living with HIV (Human Immunodeficiency Virus) cases by State in 

Nigeria(2014) as uncontaminated data and Malaria cases by State in Nigeria (2014) as 

contaminated data due to missingness.The Nigeria national population census figures areused 

as standardization. The data are available with the National Bureau of Statistics (2016 and 

2012) respectively and, the expected counts are available with the authors.The investigation is 

carried out through a simulation study of 100000 samples using MCMC sampling technique 

by OpenBUGS statistical software. The EB models results are presented in Tables 3.6 and 3.7, 

and the corresponding disease maps are presented inFigures 3.2, 3.3, 3.4,3.6,3.7 and 3.8. For 

further investigation, the comparative line graphs of the standard deviations are depicted in 

Figures3.5 and 3.9. 
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Table 3.6 Posterior Relative Risk Estimates and SD of Different EB Models by State under 

Uncontaminated Data using HIV Cases by State in Nigeria (2014) 
 PG Model PGG Model GPGG Model 

State 𝜽̂̃𝒊
𝑷𝑮 SD 𝜽̂̃𝒊

𝑷𝑮𝑮 SD 𝜽̂̃𝒊
𝑮𝑷𝑮𝑮 SD 

Abia 1.2430* 0.004356 1.2430* 0.004346 0.9138 0.001152 

Adamawa 1.0260* 0.003749 1.0260* 0.003718 0.7143 0.001135 

AkwaIbom 2.7030* 0.005454 2.7030* 0.005438 2.3188* 0.000776 

Anambra 0.5470 0.002377 0.5470 0.002376 0.3008 0.001070 

Bauchi 0.3227 0.001729 0.3228 0.001724 0.1351 0.001003 

Bayelsa 0.7821 0.004446 0.7821 0.004449 0.4973 0.001618 

Benue 2.0080* 0.004526 2.0080* 0.004533 1.6419* 0.000828 

Borno 0.7840 0.002854 0.7840 0.002849 0.4990 0.001042 

Cross River 1.2490* 0.004322 1.2490* 0.004335 0.9194 0.001141 

Delta 0.3657 0.001959 0.3657 0.001964 0.1644 0.001084 

Ebonyi 0.5791 0.003389 0.5791 0.003380 0.3266 0.001480 

Edo 0.3061 0.002022 0.3061 0.002028 0.1243 0.001205 

Ekiti 0.3255 0.002428 0.3255 0.002426 0.1370 0.001406 

Enugu 0.4542 0.002456 0.4542 0.002453 0.2287 0.001221 

Gombe 0.9056 0.004077 0.9056 0.004074 0.6060 0.001348 

Imo 1.0290* 0.003362 1.0290* 0.003372 0.7170 0.001017 

Jigawa 0.7053 0.002650 0.7053 0.002645 0.4314 0.001031 

Kaduna 2.4510* 0.004176 2.4510* 0.004179 2.0724* 0.000644 

Kano 0.7615 0.001871 0.7615 0.001872 0.4795 0.000694 

Katsina 0.3936 0.001715 0.3936 0.001713 0.1841 0.000912 

Kebbi 0.2257 0.001732 0.2257 0.001731 0.0756 0.001151 

Kogi 0.8507 0.003350 0.8507 0.003357 0.5573 0.001157 

Kwara 0.6648 0.003467 0.6648 0.003480 0.3972 0.001399 

Lagos 0.9427 0.002123 0.9427 0.002127 0.6391 0.000684 

Nassarawa 2.4600* 0.007558 2.4600* 0.007531 2.0812* 0.001160 

Niger 0.8240 0.003010 0.8240 0.002999 0.5339 0.001060 

Ogun 0.8036 0.003051 0.8036 0.003050 0.5160 0.001090 

Ondo 0.6183 0.002789 0.6183 0.002787 0.3586 0.001170 

Osun 0.6140 0.002790 0.6140 0.002784 0.3551 0.001174 

Oyo 1.3350* 0.003209 1.3350* 0.003211 0.9997 0.000808 

Plateau 1.1100* 0.003894 1.1100* 0.003890 0.7910 0.001117 

Rivers 1.0100* 0.002892 1.0100* 0.002898 0.6997 0.000893 

Sokoto 1.3200* 0.003921 1.3200* 0.003914 0.9856 0.000996 

Taraba 2.0150* 0.006160 2.0150* 0.006161 1.6486* 0.001116 

Yobe 1.1140* 0.004552 1.1140* 0.004542 0.7946 0.001306 

Zamfara 0.2474 0.001813 0.2474 0.001812 0.0880 0.001163 

Abuja 3.4330* 0.010280 3.4330* 0.010275 3.0369* 0.001186 

Nigeria 1.0000  1.0000  1.0000  

DIC 553.31 553.31 139.70 

DT -511.19 -511.19 -138.32 

Dbar 516.30 516.30 139.70 

PD 37.01 37.01 37.01 

MCE 0.000007892 0.000005550 0.000001725 

5% SD 0.000176432 0.000176324 0.000054703 
Note: *Asterisk implies Relative Risk ≥ 1 (High Risk Area). Non-asterisk implies Relative Risk < 1 (Low Risk Area). SD 

(Standard Deviation). MCE (Monte Carlo error), DT (Dispersion Test), DIC (Deviance Information Criterion), Dbar 

(Adjusted Deviance), PD (Number of Parameters). 
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Figure 3.2.HIV Incidence Mapping By State in Nigeria (2014) for PG Model Estimates under 

Uncontaminated Data 
 

Figure 3.3.HIV Incidence Mapping By State in Nigeria (2014) for PGG Model Estimates under 

Uncontaminated Data 
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Figure 3.4.HIV Incidence Mapping By State in Nigeria (2014) for GPGG Model Estimates 

under Uncontaminated Data 
 

 
Figure 3.5.Line Graph of Standard Deviations of Different EB models under Uncontaminated 

Data 
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Table 3.7. Posterior Relative Risk Estimates and SD of Different EB Models by State under 

Contaminated Data using Malaria cases by State in Nigeria (2014) 
 PG Model PGG Model GPGG Model 

State 𝜽̂̃𝒊
𝑷𝑮 SD 𝜽̂̃𝒊

𝑷𝑮𝑮 SD 𝜽̂̃𝒊
𝑮𝑷𝑮𝑮 SD 

Abia 0.9985 1.567000 1.1000* 1.225000 3.43E-05 0.000046 

Adamawa 1.0020* 1.565000 1.0970* 1.223000 3.08E-05 0.000041 

AkwaIbom 0.9992 1.569000 1.0980* 1.225000 2.50E-05 0.000033 

Anambra 0.0598 0.001565 0.0598 0.001565 0.0585 0.001532 

Bauchi 0.9999 1.573000 1.1010* 1.228000 2.09E-05 0.000028 

Bayelsa 0.5400 0.007360 0.5400 0.007360 0.4481 0.006124 

Benue 1.0020* 1.570000 1.0970* 1.219000 2.30E-05 0.000031 

Borno 0.1509 0.002498 0.1509 0.002498 0.1427 0.002352 

Cross River 5.6970* 0.018380 5.6970* 0.018340 1.8010* 0.005810 

Delta 0.9965 1.566000 1.0970* 1.222000 2.37E-05 0.000031 

Ebonyi 3.5700* 0.016790 3.5700* 0.016740 1.5160* 0.007133 

Edo 1.0060* 1.575000 1.0960* 1.222000 3.06E-05 0.000041 

Ekiti 1.1340* 0.009005 1.1340* 0.008997 0.7928 0.006303 

Enugu 0.0984 0.002275 0.0984 0.002275 0.0949 0.002190 

Gombe 1.0020* 1.568000 1.1000* 1.225000 4.13E-05 0.000055 

Imo 0.9957 1.552000 1.0940* 1.220000 2.47E-05 0.000033 

Jigawa 2.2490* 0.009405 2.2490* 0.009407 1.2130* 0.005074 

Kaduna 0.9984 1.563000 1.0970* 1.222000 1.61E-05 0.000021 

Kano 0.8588 0.003969 0.8588 0.003955 0.6476 0.002986 

Katsina 1.0030* 1.579000 1.0970* 1.223000 1.69E-05 0.000022 

Kebbi 4.5500* 0.015500 4.5490* 0.015520 1.6680* 0.005682 

Kogi 1.0000* 1.569000 1.0940* 1.222000 2.96E-05 0.000039 

Kwara 0.9995 1.560000 1.0950* 1.221000 4.10E-05 0.000055 

Lagos 1.6710* 0.005626 1.6710* 0.005623 1.0230* 0.003446 

Nassarawa 0.8746 0.008960 0.8746 0.008960 0.6566 0.006739 

Niger 1.0010* 1.561000 1.0980* 1.222000 2.47E-05 0.000033 

Ogun 1.0040* 1.570000 1.0960* 1.224000 2.61E-05 0.000035 

Ondo 6.5080* 0.017990 6.5080* 0.017990 1.8750* 0.005165 

Osun 5.7720* 0.016960 5.7720* 0.016960 1.8090* 0.005324 

Oyo 1.0010* 1.562000 1.0970* 1.223000 1.74E-05 0.000023 

Plateau 0.3136 0.004114 0.3136 0.004100 0.2802 0.003671 

Rivers 0.5592 0.004297 0.5593 0.004285 0.4613 0.003541 

Sokoto 3.0470* 0.011890 3.0470* 0.011870 1.4130* 0.005508 

Taraba 1.4270* 0.010290 1.4270* 0.010320 0.9256 0.006667 

Yobe 0.4294 0.005634 0.4294 0.005631 0.3692 0.004837 

Zamfara 0.0321 0.001298 0.0321 0.001292 0.0317 0.001281 

Abuja 0.9969 1.566000 1.0960* 1.218000 0.0001 0.000091 

Nigeria 1.0000  1.0000  1.0000  

DIC 271.70 270.66 118.00 

DT 15.73 15.69 7.37 

Dbar 251.70 251.70 118.00 

PD 20.00 19.96 19.99 

MCE 0.001612193 0.000894493 0.000003969 

5% SD 0.036228162 0.028321243 0.000124432 
Note: *Asterisk implies Relative Risk ≥ 1 (High Risk Area). Non-asterisk implies Relative Risk < 1 (Low Risk Area). SD 

(Standard Deviation). MCE (Monte Carlo error), DT (Dispersion Test), DIC (Deviance Information Criterion), Dbar 

(Adjusted Deviance), PD (Number of Parameters).  
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Figure 3.6. Malaria Incidence Mapping By State in Nigeria (2014) for PG Model Estimates 

under Contaminated Data 

Figure 3.7.Malaria Incidence Mapping By State in Nigeria (2014) for PGG Model Estimates 

under Contaminated Data 
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Figure 3.8.Malaria Incidence Mapping By State in Nigeria (2014) for GPGG Model Estimates 

under Contaminated Data 

 

 

Figure 3.9.Line Graph of Standard Deviations of Different EB models under Contaminated 

Data 

4. DISCUSSION OF RESULTS 

4.1 Discussion of Simulation Results under Uncontaminated Data 

From the simulation resultsof the different EB models under uncontaminated data in Table 3.3, 

for both small and large samples of 5, 10, 20 and 50, 100, 200 (that is, overdispersed, 

equidispersed and underdispersed data respectively), the PGG and GPGG models did better  
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than the existing PG model in handling dispersion, since they have smaller SD, DIC and DT 

values. In addition, GPGG model has the smallest values, hence the most efficient in handling 

dispersion in small and large samples under uncontaminated data. The results suggest that 

GPGG and PGG models have better precision in handling dispersion than PG model. These 

results are supported by the relative efficiency presented in Table 3.5; where GPGG and PGG 

models are relatively more efficient than PG model as the ratios are less than 1 respectively. 

The simulation results of the posterior estimates are reliable, since there is convergence of 

MCMC sampling as the chains overlap each other, as shown in the stationary dynamic trace 

plots in Figure 3.1 for each model.The results indicated under uncontaminated data, for both 

small and large samples characterize with overdispersion, equidispersion or underdispersion, 

GPGG provided the best precision and model efficiencyin handling dispersion. 

4.2 Discussion of Simulation Results under Contaminated Data 

From the simulation resultsof the different EB models under contaminated data in Table 3.4, 

for both small and large samples size of 5, 10, 20 and 50, 100, 200 (that is, overdispersed, 

equidispersed and underdispersed data respectively), the new EB models (PGG and GPGG) 

outperformed the existing PG model in handling dispersion, since they havesmaller SD values 

and better goodness of fit with lesser DIC and DT values compared to PG model. The results 

further revealed that GPGG model has the smallest SD, DIC and DT values, hence the most 

efficient in handling dispersion insmall and large samples under contaminated data. The results 

suggest that GPGG and PGG models have better precision in handling dispersion than PG 

model. These results are supported by the relative efficiency presented in Table 3.5; where 

GPGG and PGG models are relatively more efficient than PG model as the ratios are less than 

1 respectively. The simulation results of the posterior estimates are reliable, since there is 

convergence of MCMC sampling as the chains overlap each other, as shown in the stationary 

dynamic trace plots in Figure 3.1 for each model.The results indicated under contaminated 

data, for both small and large sample data characterize with overdispersion, equidispersion or 

underdispersion, GPGG provided the best precision and model efficiencyin handling 

dispersion. 

4.3 Discussion of Real Data Application Results under Uncontaminated Data 

The results from Table 3.6, indicate that under uncontaminated data the estimates of relative 

risk (RR) of HIV cases by State in Nigeria range from 0.2257 (Kebbi State) to 3.4330 (Abuja 

FCT) respectively for PG and PGG EB models while for GPGG model, it ranges from 0.0756 

(Kebbi State) to 3.0369 (Abuja FCT) respectively. RR≥1 imply higher risk while RR<1 imply 

lower risk. Fifteen (15) States (Abia, Adamawa, Akwa-Ibom, Benue, Cross-River, Imo, 

Kaduna, Nassarawa, Oyo, Plateau, Rivers, Sokoto, Taraba, Yobe and FCT Abuja) were 

reported to be at higher risk by PG and PGG models. While six (6) States (Akwa-Ibom, Benue, 

Kaduna, Nassarawa, Taraba and FCT Abuja) were reported to be at higher risk by GPGG 

model. The HIV disease mappings are in Figures 3.2, 3.3, and 3.4 respectively. The PG and 

PGG models produce similar estimates of relative risk. Also, the two EB models exhibited 

similar characteristics based on the DIC results (Table 3.6) under an uncontaminated data that 

is underdispersed. To evaluate the precision of the posterior estimates and the convergence of 

the EB models, the Monte Carlo error (MCE) is calculated (Table 3.6). According to Brooks 

and Gelman (1998), the simulation is done until MCE<5% of the sampled standard deviation. 

Hence, the results indicate that there is accuracy of the 
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posterior estimates for each EB model and convergence of MCMC sampling, since 

MCE<5%SD respectively. The dispersion test for each model (Table 3.6) suggests that the 

count data across the regions are highly underdispersed at -511.19,-511.19, and -138.32 

respectively. In general, the GPGG model has the least SDs and DIC value at 139.70, hence 

provided the best model efficiency in handling dispersion in relative risk estimation for disease 

mapping under uncontaminated data. Standard deviations of the PGG model are mostly close 

to the PG model, which indicates that there is no much gain in precision by PGG model under 

uncontaminated data. This is supported by DIC values and line graphof standard deviations in 

Figure 3.5.Based on the results, GPGG is comparatively the best modelin handling dispersion 

under uncontaminated. 

4.4 Discussion of Real Data Application Results under Contaminated Data 

The results from Table 3.7, indicate that under contaminated data characterized with missing 

values, the estimates of relative risk (RR) of Malaria cases by State in Nigeria range from 

6.5080 (Ondo State) to 0.0321 (Zamfara) for PG and PGG models, and 1.8750 (Ondo State) to 

1.61E-05 (Kaduna) for GPGG model. RR≥1 imply higher risk while RR<1 imply lower risk. 

Therefore, nineteen (19) States (Adamawa, Benue, Cross-River, Ebonyi, Edo, Ekiti, Gombe, 

Jigawa, Katsina, Kebbi, Kogi, Lagos, Niger, Ogun, Ondo, Osun, Oyo, Sokoto and Taraba) were 

reported to be at higher risk by PG model. Twenty-Seven (27) States (Abia, Adamawa, Akwa-

Ibom, Bauchi, Benue, Cross-River, Delta, Ebonyi, Edo, Ekiti, Gombe, Imo, Jigawa, Kaduna, 

Katsina, Kebbi, Kogi, Kwara, Lagos, Niger, Ogun, Ondo, Osun, Oyo, Sokoto, Taraba and FCT 

Abuja) were reported to be at higher risk by PGG model. While eight (8) States (Cross-River, 

Ebonyi, Jigawa, Kebbi, Lagos, Ondo, Osun and Sokoto) were reported to be at higher risk by 

GPGG model. Also GPGG and PGG models provided a better prediction of the relative risk 

(RR) parameter with minimum variance than PG model under a contaminated data 

characterized with missing values (States Malaria cases were not reported). The PG and PGG 

models produce similar estimates of relative risk at the States with reported cases of Malaria. 

But at the States where Malaria cases were not reported, the relative risk estimations are 

dissimilar. Since the standard deviations of the PGG model is mostly less than the PG model, 

the PGG model is equally competitive in relative risk estimation for disease mapping under 

contaminated data. Generally, GPGG model is the least variable and has the smallest DIC, SD 

and DT values hence the most efficient model to handle overdispersion in relative risk 

estimation for disease mapping under contaminated data. These are supported by the line graph 

plot of the standard deviations in Figure 3.9; indicating GPGG and PGG are comparatively 

better models than PG model. To assess convergence and the accuracy of the posterior 

estimates for each EB model, the Monte Carlo error (MCE) is calculated (Table 3.7). The 

results indicate that there is accuracy of the posterior estimates for each EB model, since 

MCE<5%SD respectively and convergence of MCMC sampling. The dispersion test for PG, 

PGG, and GPGG (Table 3.7) suggests that there is sign of overdispersion in the count data 

across the regions at 15.73, 15.69, and 7.37 respectively. Therefore, based on model efficiency 

in relative risk parameter estimation, GPGG model provided the most reliable disease mapping 

(Figures 3.6, 3.7, and 3.8). 
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5.CONCLUSION 

The current study aimed at handling dispersion towards enhancing the efficiency of 

relative risk estimation in disease mapping using generalized Gamma distribution aspriorwith 

Poisson and generalized Poisson likelihoods, for health risk assessment.The study is as a  

result of recent needs for development of Bayesian priors and modeling using 

generalized distributions. The developed EB models using GG distribution as prior revealed a 

proper conjugate prior with Poisson and generalized Poisson likelihoods, since the posterior 

and prior distributions are in the same class of distribution.The study has shown that the use of 

generalized Gamma distribution as Bayesian prior with Poisson and generalized Poisson 

likelihoods improved efficiency in relative risk estimations in small and large samples 

underuncontaminated and contaminated data characterized with either overdispersion or 

underdispersion. This is clearly evident in GPGG EB model which showed to be the most 

efficient, based on the current study, in handling dispersion in relative risk estimation for 

disease mapping when data is uncontaminated and contaminated. PGG is comparatively a 

better model than PG model in handling dispersion, especially when data is contaminated. As 

showed in the simulation results, PG EB model is inept to handle underdispersion; therefore 

upholding the view expressed inZou et al.,(2018), Lord and Geedipally (2016), and Lord 

(2006).Hence,GPGG and PGG models can serve as potential alternatives in providing reliable 

disease mapping. Key suggestions for further study includes deriving spatial correlation 

models, including covariates which were not considered in this paper due to the nature of data 

collected and deriving the bivariate and the multivariate cases of GPGG and PGG EB models 

for mapping of two or more diseases at the same time and the implementation to aid 

practitioners. 
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