EXISTENCE OF WEAK SOLUTIONS FOR THE INCOMPRESSIBLE NONLINEAR PARABOLIC SYSTEM WITH DAMPING
Abstract
This work concerns the existence of the weak solutions associated with the incompressible
parabolic system with damping. The solution is shown to exist with data in Lesbegue space, L2.
References
X.J. Cai, Q.S. Jiu. Weak and strong solutions for the incompressible NavierStokes equations with damping. J. Math. Anal. Appl. 343 (2008) 799809.
E. Hopf. Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen. Math. Nachr. vol. 4 (1951) pages 213-231
W. H. Karol and J. C. Robinson. Energy equality for the 3D critical convective Brinkman Forchheimer quations. arXiv:1612.02020v3 (2017) [math.AP].
V. Kalantarov, S. Zelik. Smooth attractors for the BrinkmanForchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11(2012), pages 20372054..
J. Leray. Sur le mouvement´dun liquide visqueux emplissant ´despace. Acta Math. vol. 63 (1934) pages 193248..
Petr Plechac and Vladimr Sverak. Singular and regular solutions of a non-linear parabolic system. J. of Nonlinearity, arXiv:math/0302129v1 [math.AP] 11 Feb 2003.
M. Struwe. On partial regularity results for the NavierStokes equations. Comm. Pure Appl. Math. 41 (1988) 437458.
M. Rockner, X. Zhang. Tamed 3D NavierStokes equation: existence, uniqueness and regularity.. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 4 (2009) pages 525549.
Z. Zhang, Xinglong Wu, Ming Lu. On the uniqueness of strong solutions to incompressible Navier-Stokes equation. J. Math. Anal. 377 (2011) 414-419.
Copyright (c) 2022 Kabiru Michael Adeyemo
This work is licensed under a Creative Commons Attribution 4.0 International License.