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Abstract. Diabetes Mellitus is an escalating public health issue in Nigeria,
significantly affecting the population. This study analyzes the survival patterns
of diabetes patients in Lagos State, Nigeria, using Bayesian survival analysis
techniques, including the Cox Proportional Hazard model and Kaplan-Meier
estimator, to identify key factors influencing survival rates and predict future
outcomes. Drawing from a comprehensive, multi-year dataset that includes
critical predictors and confounders, the study reveals a significant decline in
survival probability over time. Posterior predictive checks confirm the models’
adequacy, showing strong alignment between observed data and simulations.
The Cox Proportional Hazard model identifies age, gender, and insulin use
as key contributors to the hazard rate, while other factors are found to have
limited impact. These findings underscore the importance of early intervention
strategies targeting high-risk factors, such as age and insulin dependency, to
improve outcomes and reduce the diabetes burden in Lagos State, Nigeria.

1. Introduction

Diabetes mellitus is a chronic metabolic disorder characterized by elevated
blood sugar levels resulting from either insufficient insulin production or the
body’s inability to effectively use the insulin it produces. Type 1 diabetes is
an autoimmune disease that results in the destruction of insulin-producing beta
cells in the pancreas[2] Globally, diabetes represents a significant public health
concern, affecting an estimated 537 million adults as of 2021, with projections
indicating a rise to 643 million by 2030 [10].

1.1. Preliminaries. The burden of diabetes is particularly pronounced in devel-
oping countries, where healthcare systems often struggle to manage the increasing
prevalence and complications associated with the disease. There are two main
types of diabetes: type 1 diabetes and type 2 diabetes. Type 2 diabetes is a
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lifestyle-related disease that is characterized by insulin resistance and/or beta
cell dysfunction.[28].

1.2. Literature Review. Survival analysis, a set of statistical techniques used
to analyze time-to-event data, is a powerful tool in clinical research, provid-
ing essential insights for health interventions. Researchers such as [20], [6], and
[24] employed the Cox Proportional Hazard model and Kaplan-Meier estimator
to evaluate risk factors for Diabetes Mellitus (DM). Their findings highlighted
advanced age and risky behaviors like alcohol consumption and smoking as sig-
nificant contributors to higher mortality rates. Other risk factors included being
overweight, high blood pressure, and elevated cholesterol levels. [3], using Kaplan-
Meier survival curves and the Log-rank test, found that survival rates varied by
gender, with females showing better outcomes than males. However, a study by
[1] reported similar survival rates between male and female diabetics but observed
that married individuals had longer survival times compared to single or divorced
patients. [7] compared parametric and semi-parametric survival models for dia-
betic data, concluding that a Weibull Accelerated Failure Time (AFT) model was
the best fit. [13] applied a Bayesian survival approach to estimate the onset of
nephropathy in type II diabetes patients. Their use of frequentist survival tools
yielded comparable conclusions. When the proportional hazard assumption did
not hold for Diabetes Mellitus data. [26] found that the Bayesian Accelerated
Failure Time model outperformed the Classical AFT model, as evidenced by a
smaller AIC.

On a global scale, many studies have explored the survival rates and mortal-
ity predictors among diabetes patients. For instance, [14] in South Korea found
that age, duration of diabetes, and comorbidities significantly influenced mor-
tality. Similarly, [22] in the United States identified poor glycemic control and
cardiovascular complications as key determinants of survival in diabetes patients.
Socioeconomic and demographic factors such as age, gender, and ethnicity also
play a crucial role in the risk of developing type II diabetes, with older adults
experiencing higher incidence due to comorbidities and age-related reductions in
insulin sensitivity.

Poor dietary habits, physical inactivity, smoking, and excessive alcohol con-
sumption have consistently been identified as key risk factors for type II diabetes.
[8] and [19]. Diets rich in sugar, refined carbohydrates, and saturated fats have
been linked to an increased risk of developing diabetes, while sedentary behav-
ior and prolonged sitting contribute to insulin resistance and weight gain. [15].
Genetic predisposition also plays a significant role in the likelihood of developing
type II diabetes. Genome-wide association studies (GWAS) have identified sev-
eral genetic variants associated with the condition, affecting insulin production,
sensitivity, and glucose metabolism [16] and [18], further contributing to genetic
risk factors for the disease.

Research on diabetes survival in Africa is still emerging, though studies like
[17] in South Africa have emphasized the influence of socio-economic status and
healthcare access on diabetes outcomes. In Nigeria, studies such as [27] have
mainly addressed prevalence and risk factors, with limited attention to survival
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analysis. Bayesian methods provide a powerful framework for survival analysis,
offering the advantage of incorporating prior knowledge and handling complex
models. The Cox Proportional Hazard model, widely used in survival analysis,
can be extended within the Bayesian framework to yield more flexible and infor-
mative results. [9] demonstrated the strengths of Bayesian Cox models in medical
research, especially their ability to integrate prior information and manage small
sample sizes effectively.

The Kaplan-Meier estimator, a non-parametric tool for estimating the survival
function based on observed survival times, is particularly effective for dealing
with censored data and offers a visual representation of survival probabilities
over time. [11]. Diabetes Mellitus is a significant public health concern in Nigeria,
with an estimated prevalence of 4.7%, affecting approximately 9.3 million adults.
This figure is expected to rise to 15.1 million by 2030. [21]. Identifying critical
predictors and confounders is essential to understanding the factors that affect
survival among diabetes patients. Common predictors include age, sex, diabetes
duration, glycemic control (HbA1c levels), comorbidities, and lifestyle factors like
smoking and physical activity. Confounders such as socio-economic status and
healthcare access can also greatly influence survival outcomes. [14]

In Bayesian survival analysis, incorporating predictors and confounders enables
a more detailed understanding of their effects on survival. Models such as the
Weibull and log-logistic offer flexible parametric alternatives to the Cox model,
accommodating various hazard function shapes and providing deeper insights
into survival dynamics [4]. Additionally, diabetes places a significant economic
burden on Nigeria, with direct costs estimated at $1.2 billion annually, while
indirect costs, including lost productivity, are even higher.[5]. The need for robust
modeling of diabetes progression, given the complexity of the disease and its
economic impact, underscores the importance of advanced statistical techniques
in understanding diabetes outcomes.

In this study, we are employing a Bayesian technique called a random walk prior
to capture the temporal dependencies in diabetes data in Lagos State. This prior
distribution assumes that a parameter’s value at any given time is correlated with
its previous value, mimicking a ”random walk” along the timeline. This approach
allows for a dynamic modeling of diabetes-related events, such as complications
like kidney failure or cardiovascular events, and how these risks change over time.
By accounting for the evolving nature of diabetes, this methodology can provide
more accurate estimates and insights into how patients’ risks change as they
progress through the disease. The choice of a specific random walk structure, such
as order one (RW1) or order two (RW2), and the smoothing level of the model,
are crucial decisions that influence the results and must be carefully balanced for
precision.

Bayesian survival analysis, incorporating a random walk prior, allows us to
model the time-dependent hazard rates of diabetes complications, offering a more
comprehensive understanding of how these events evolve. For each complication,
the posterior distributions obtained will reveal time-based hazard trends, offering
a nuanced interpretation of the disease’s progression. This analysis is critical
for making data-driven decisions about diabetes management and prevention in
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Lagos State. Despite the increasing prevalence of diabetes in Nigeria, research
on survival patterns remains limited. This study aims to bridge that gap by
examining survival rates among diabetes patients at Lagos State General Hospi-
tal, employing advanced Bayesian survival analysis to provide new insights into
factors influencing patient outcomes

2. Materials and Methods

The Bayesian Survival analysis, the formulation of the Cox Proportional Haz-
ards (Cox PH) and Kaplan-Meier model for Diabetes disease were established.
Comparative analysis was made among the two models to determine the model
that best fits the data

Bayesian survival analysis is a sophisticated statistical method that combines
survival analysis methods with Bayesian statistics. It is used to simulate the
amount of time before an important event, such the onset of type II diabetes,
takes place. The robustness of time-to-event data analysis is increased by this
methodology’s ability to incorporate prior knowledge and estimate posterior prob-
ability. [25].

In the intricate landscape of survival analysis, the theoretical framework acts
as both the compass and the map, guiding the exploration of diabetes progres-
sion and survival outcomes. It is through the lens of established mathematical
constructs that the navigation of the complexities of Diabetes Mellitus and its
impact on patient care were established. This introduction delineates the key
theoretical foundations, their mathematical underpinnings, and their significance
in the context of Bayesian Survival Analysis.

Survival analysis theory is the cornerstone of this theoretical framework, offer-
ing a profound understanding of time-to-event data. At its core, it relies on the
survival function S(t), denoting the probability of an event not occurring before
time t, and the hazard function λ(t), representing the instantaneous rate of events
at time t. These fundamental constructs enable us to quantify the likelihood of
patients experiencing diabetes-related events at different time points. [12]

2.1. Survival Function: Survival analysis relies on the Survival Function S(t).
This function is a property of any random variable that maps a set of events,
usually associated with mortality or failure of some system onto time. It captures
the probability that the system will survive beyond a specified time.

St = p(T > t) (2.1)

λ(t) = lim[∆t → 0][p(t ≤ T < t+ ∆t|T ≥ t)∆t] (2.2)

Let T represent survival time. We regard T as a random variable with cumulative
distribution Function:

F(t) = Pr(T ≤ t) (2.3)
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and probability (event) density functions f(t), f(t) = F
′
(t). Given the probability

that the event has occurred by a particular time t:

f(t) = lim
∆→0

P (t ≤ T ≤ t+ ∆t)

∆t

(2.4)

The Survival function is often referred to as the complementary cumulative
distribution function. This can be seen below, with the survival function con-
ventionally denoted by S(t), for some time t and T (usually representing time
of death or failure) is a continuous random variable with cumulative distribution
function F(t) on the interval [0,∞]. The survival function of T is

S(t) = P (T > t) = 1− F (t) (2.5)

Simply put, (2.5) gives the probability that the time of death is later than some
specified time t; the properties that S (t) is monotonically decreasing; the survival
function is usually assumed to approach zero as time increases without bound,
i.e., St → 0 as t→∞ .The survival function is smooth and right continuous. The
time, t = 0, represents some origin, typically the beginning of a study or the start
of operation of some system. S(0) is commonly unity but can be less to represent
the probability that the system fails immediately upon operation. In other words,
one would usually assume S(0)= 1, although it could be less than 1 if there is the
possibility of immediate death or failure. This function would be used for two
main reasons. Firstly, determining a patient′s probability of surviving to time t
and secondly, determining the % which survive to time t.

2.2. The Bayesian Paradigm. The Bayesian paradigm is based on specifying a
probability model for the observed data D, given a vector of unknown parameters
θ , leading to the likelihood function L(θ|D) . Then we assume that θ is random
and has a prior distribution denoted by π(θ) . Inference concerning θ is then
based on the posterior distribution, which is obtained by Bayes′ theorem. The
posterior distribution of θ is given by

π(θ|D) =
L(θ|D)π(θ)∫

ϑ
L(θ|D)π(θ)dθ

(2.6)

Where ϑ denotes the parameter space of θ, which implies that π(θ|D)
is proportional to the likelihood multiplied by the prior, π(θ|D) ∝ L(θ|D)π(θ),

and thus, it involves a contribution from the observed data through L(θ|D) , and
the contribution from prior information quantified through π(θ) . The quantity
m(D) =

∫
ϑ
L(θ|D)π(θ)dθ is the normalizing constant of π(θ), and is often called

the marginal distribution of the data or the prior predictive distribution.
In most models and applications, m(θ) does not have an analytic closed form,

and therefore π(θ|D) does not have a closed form. This difficulty leads to the
following question: How do we sample from a multivariate distribution π(θ|D)
when no closed form is available for it? This question has led to an enormous
literature for computational methods for sampling from π(θ|D) as well as methods
for estimating m(D) . This is what motivated the use of the MCMC algorithm
and the various samplers adopted by the MCMC algorithm.
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For this paper, the Hamiltonian Markov chain (HMC) will be used in estimating
the parameters of the models used.

2.3. Estimation of Parametric Models.

2.3.1. Data and Notation. The data for this study was collected from the medical
records of Lagos State General Hospital. The dataset includes patients diagnosed
with diabetes mellitus over a period spanning from 2010 to 2020. The data
included those patients diagnosed with type 1 or type 2 diabetes mellitus who
received treatment and follow-up care at Lagos State General Hospital during the
study period.

Assuming that a true event time for individual i (i = 1 · · · , N) exists and can
be denoted by T ∗i . Then the observed outcome data

Di = (T
′

i , T
di
i , T

E
i , di) (2.7)

for individual I are:

• T ′i denotes the observed event or censoring time;

• T dii denotes the observed upper limit for interval censored individuals;

• TEi denotes the observed entry time (the interval at which an individual
became at risk of experiencing the event); and

• di ∈ (0, 1, 2, 3) denotes an event indicator taking value 0 if individual
i was right censored i.e.(T ∗i > Ti) value 1 if individual i, was uncensored
i.e.(T ∗i = Ti) value 2 if individual i was left censored i.e.(T ∗i < Ti), or value
3 if individual i was interval censored i.e.(T

′
− < T ∗i < T dii )

For the purpose of this research, we will focus just on right censoring.

2.3.2. Hazard, Cumulative Hazard and Survival. There are three quantities of
interest in standard survival analysis: the hazard rate, the cumulative hazard,
and the survival probability. It is these quantities that are used to form the
likelihood function for the survival models. The hazard is the instantaneous rate
of occurrence of the event at a time t. Mathematically, it is defined as:

hi(t) = lim
∆→0

P (t ≤ T ∗i < t+ ∆t|T ∗i > t)

∆t
(2.8)

where ∆t is the width of some small-time interval.
The numerator in (2.8) is the conditional probability of the individual experi-

encing the event during the time interval (t, t+ ∆t), given that they were still at
risk of the event at time t . The denominator in (2.8) converts the conditional
probability to a rate per unit of time. As ∆t approaches the limit, the width of
the interval approaches zero and the instantaneous event rate is obtained. The
cumulative hazard is defined as:

Hi(t) =

∫ i

u=0

hi(u)du (2.9)

and the survival probability is defined as:

Si(t) = e(−Hi(t)) = e(−
∫ t
u=0 hi(u)du) (2.10)
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It can be seen here that in the standard survival analysis setting, where there
is one event type of interest (i.e., no competing events) there is a one-to-one
relationship between each of the hazard, the cumulative hazard, and the survival
probability.

Given the probability density function (pdf) of the log-logistic distribution:

f(x;α, β) =
(βα)(xα)β−1

(1 + (xα)β)2
(2.11)

The survival function S(x) is:

S(x;α, β) =
1

1 + (xα)β
(2.12)

The hazard function h(x) is:

h(x;α, β) =
f(x;α, β)

S(x;α, β)
(2.13)

The cumulative hazard function H(x) is:

H(x;α, β) =

∫ x

0

h(t;α, β)dt (2.14)

The probability density function (pdf) of a log-logistic distribution with scale
parameter α and shape parameter β is given by:

f(x;α, β) =

(
β
α

) (
x
α

)β−1(
1 +

(
x
α

)β)2 (2.15)

The survival function S(x) is:

S(x;α, β) =
1

1 +
(
x
α

)β (2.16)

The hazard function h(x) is:

h(x;α, β) =
f(x;α, β)

S(x;α, β)
(2.17)

Substituting the pdf and survival function:

h(x;α, β) =

( βα)( xα)
β−1(

1+( xα)
β
)2

1

1+( xα)
β

Simplifying:

h(x;α, β) =

(
β
α

) (
x
α

)β−1

1 +
(
x
α

)β
The cumulative hazard function H(x) is:

H(x;α, β) =

∫ x

0

h(t;α, β), dt



104 R. K. OGUNDEJI, J. A. AKINYEMI, AND O. R. SALAKO

Substituting the hazard function:

H(x;α, β) =

∫ x

0

(
β
α

) (
t
α

)β−1

1 +
(
t
α

)β , dt

Let

u =

(
t

α

)β
, then

du = β

(
t

α

)β−1
1

α
dt =

β

α

(
t

α

)β−1

dt

.

H(x;α, β) =

∫ u

0

du

1 + u
This simplifies to:

H(x;α, β) = ln(1 + u)|(
x
α)

β

0

Therefore:

H(x;α, β) = ln

(
1 +

(x
α

)β)
(2.18)

The survival function can also be expressed in terms of the cumulative hazard
function:

S(x;α, β) = e−H(x;α,β) (2.19)

Substituting the cumulative hazard function:

S(x;α, β) = e
− ln

(
1+( xα)

β
)

This simplifies to:

S(x;α, β) =
1

1 +
(
x
α

)β (2.20)

2.4. Model Formulation. This study employs a retrospective cohort design to
analyze the survival patterns of diabetes mellitus patients treated at Lagos State
General Hospital, Nigeria. The analysis focuses on understanding the survival
rates and identifying significant predictors and confounders that influence these
rates using Bayesian survival analysis techniques. Under a hazard scale formu-
lation, we model the hazard of the event for individual i at time t using the
regression model:

hi(t) = h0(t)e(ηi(t)) (2.21)

Where h0(t) is the baseline hazard (i.e the hazard for an individual with all
covariates set equal to zero) at time t, and ηi (t) denotes the linear predictor
evaluated for individual i at time t.

In terms of generality, the linear predictor is a time-varying. This implies that
it is a time-varying hazard ratio. For a hazard ratio that has fixed time, we have

hi(t) = h0(t)e(ηi(t)) (2.22)

From equation (2.22), our linear predictor can be defined as:
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ηi(t) = βT (t)Xi(t) (2.23)

Where
Xi(t) = [1, xi1(t), ..., xiP (t)] denotes a vector of covariates with
xip(t) denoting the observed value of the pth(p = 1, · · · , P )
covariate for the ith (i = 1,..., N )
individual at time t, and
β = [β0, β1(t), · · · βP (t)] denotes a vector of parameters with β0

denoting an intercept parameter and βP (t) denoting the possibly time varying
coefficient of the pth, covariate.

2.4.1. Kaplan-Meir Estimator. The Kaplan-Meier estimator will be used to esti-
mate the survival function of diabetes patients. This non-parametric method is
suitable for handling censored data and provides a visual representation of the
survival probability over time. The Kaplan-Meier estimator, denoted as S(t),
estimates the survival function S(t)− P (T > t)

where T is the survival time. The estimator is defined as:

S(t) =
∏
ti≤t

(
1− di

ni

)
(2.24)

Where S(t) is the estimated survival function, di is the number of events (deaths)
at time ti, and ni is the number of individuals at risk at time ti. The Kaplan-
Meier estimator is calculated iteratively for each distinct event time ti
Initialization
i. Initialize t to the smallest event time t1, i.e. t = t1

ii. Initialize n to the total number of subjects in the study, i.e. n = n0 Calcu-
lation for t = t1 Calculate d1, the number of events at time t1, then calculate n1,
the number of subjects at risk just before time t1. Calculate the Kaplan-Meier
estimate for t1:

S(t) = 1− di
ni

(2.25)

Iteration for t = t2, t3 · · · , tm:
For each of subsequent time point ti, update t to ti, calculate di, the number

of events at time ti then, calculate ni, the number of subjects at risk just before
time ti and update the Kaplan-Meier estimate:

S(ti) = S(ti−1)

(
1− di

ni

)
(2.26)

The Kaplan-Meier estimator is calculated iteratively for all distinct event times
t1, t2,· · · , tm. The final Kaplan-Meier survival estimate S(t) provides the prob-
ability of survival beyond time t for each time point at which events occurred
in the dataset. This estimator is particularly useful in analyzing survival data,
especially when there are censored observations, and it allows us to visualize and
estimate the survival probability over time for different groups or populations. It
is a fundamental tool in survival analysis.



106 R. K. OGUNDEJI, J. A. AKINYEMI, AND O. R. SALAKO

2.4.2. Bayesian Cox Proportional Hazard Model. The Bayesian Cox Proportional
Hazard model will be employed to identify significant predictors of survival and
estimate the hazard ratios. This model allows for the incorporation of prior
information and handles small sample sizes effectively.Under a hazard scale for-
mulation, we model the hazard of the event for individual i at time t using the
regression model:

h(t|X) = h0(t) exp(β′X) (2.27)

Where h(t—X) is the hazard function at time (t) given covariates (X), (h0(t) is
the baseline hazard function, and β is the vector of regression coefficients. Where
h0 (t) is the baseline hazard (i.e the hazard for an individual with all covariates
set equal to zero) at time t, and hi(t) denotes the linear predictor evaluated for
individual i at time t.

In terms of generality, the linear predictor is a time-varying. This implies that
it is a time-varying hazard ratio. For a hazard ratio that has fixed time, we have
from equation (2.27), our linear predictor can be defined as:

h(t|X) = h0(t)e(β′)Xi (2.28)

Where Xi (t)= [1, xi1(t),..., xiP (t)] denotes a vector of covariates with xip (t)

2.4.3. Weibull and Log-Logistic Hazard Models. These parametric models will be
used to model the hazard function and provide a comparison with the Cox model.
The Weibull model is defined by its scale and shape parameters, making it suitable
for various types of hazard functions.

S(t) = β0 + β1x1(t) + β2x2(t) + . . .+ βpxp(t) (2.29)

h(t) = λp(λt)p−1 (2.30)

Where λ is the scale parameter and ρ is the shape parameter.

2.4.4. Log-Logistic Hazard Function.

h(t) =
ρλρtρ−1

1 + (λt)ρ
(2.31)

Where (λ) is the scale parameter and (ρ) is the shape parameter. Similar to
the Weibull model, the log-logistic model has two parameters, ( λ) the location
parameter and (ρ) the shape parameter. The log-logistic allows for non-monotonic
unimodal hazards-in this case inverted U-shapes. The shape parameter satisfies
the following conditions:

if ρ < 1 , then the conditional hazard first rises, then falls
if ρ ≥ 1 , then the hazard is declining
For the log-logistic model, the hazard can never be monotonically rising and

the corresponding survival function is:

S(t) =
1

1− (λt)p
(2.32)

With a density function:

f(t) = h(t) · S(t) =

(
ρλρtρ−1

1 + (λt)ρ

)(
1

1− (λt)p

)
(2.33)
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The corresponding cumulative hazard function is given by:

H(t) = 1 + (λt)
1
p (2.34)

Given a set of independent and identically distributed observations (x1, x2, . . . , xn),
the likelihood function L(λ, ρ) is the product of the pdf values at each observa-
tion. The probability density function of a log-logistic distribution with scale
parameter λ and shape parameter ρ is given by:

f(x;λ, ρ) =
(ρλ)(xλ)ρ−1

(1 + (xλ)ρ)2
(2.35)

f(x;λ, ρ) =

(
ρ
λ

) (
x
λ

)ρ−1(
1 +

(
x
λ

)ρ)2 (2.36)

Given a set of independent and identically distributed observations (x1, x2, . . . , xn),
the likelihood function L(λ, ρ) is:

L(λ, ρ) =
n∏
i=1

f(xi;λ, ρ) (2.37)

Substituting the pdf into the likelihood function, we get:

L(λ, ρ) =
n∏
i=1

(
ρ
λ

) (
xi
λ

)ρ−1(
1 +

(
xi
λ

)ρ)2 (2.38)

Taking the natural logarithm of the likelihood function, we obtain the log-
likelihood function (`(λ, ρ)):

`(λ, ρ) = lnL(λ, ρ) =
n∑
i=1

ln

( (
ρ
λ

) (
xi
λ

)ρ−1(
1 +

(
xi
λ

)ρ)2

)
(2.39)

Simplifying the log-likelihood function, we get:

`(λ, ρ) =
n∑
i=1

[
ln
(ρ
λ

)
+ (ρ− 1) ln

(xi
λ

)
− 2 ln

(
1 +

(xi
λ

)ρ)]
(2.40)

2.4.5. Exponential Model. For scale parameter λi = eηi(t) we have:

hi(Ti) = λ0e
ηi (2.41)

In a case where the linear predictor is not time-varying, the exponential model
leads to a hazard rate that is constant over time. Parameterizing the exponential
model with the scale parameter λi = eηi(t) For individual i, we have:

Si(T )− Si(T ui ) = e−Tiλi − e−TUi λi = e−Tie
ηi − e−TUi eηi (2.42)
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2.4.6. Cox Proportional Hazards (Cox PH). The Cox proportional Hazards (Cox
PH) is a widely used statistical model for analyzing survival data. It estimates the
effect of covariates on the hazard rate, allowing researchers to assess the impact of
various factors on the time to an event. To derive the mathematical expressions
for the Cox PH model. we will start with the likelihood function and then outline
the steps for estimation. The Cox PH model assumes that the hazard function
at time t for an individual with covariate values X can be expressed as follows:

h(t|X) = h0(t).eβ1X1+β2X2+···+βpXp (2.43)

Where:
i. h(t—X) is the hazard rate for an individual with covariate values X at time t.

ii. h0 (t) is the baseline hazard rate at time t
iii. β2X2 + · · ·+βpXp are the coefficient associated with covariates X1, X2, Xp

2.4.7. Likelihood Function. :
The likelihood function for the Cox PH model is based on the product of the

conditional probabilities of events occurring for each subject:

L(β) =
n∏
i=1

(
eβ1X1+β2X2+···+βpXp∑

j∈R(ti)
eβ1X1+β2X2+···+βpXp

)di

(2.44)

Where:
i. L(β) is the likelihood function to be maximized
ii. n is the number of subjects in the dataset
iii. di is the event indicator f for subject i (1 if an event occurred, 0 if censored)
iv. ti is the time of the event or censoring for subject i
v. Rti is the risk set at time ti representing the set of subjects who are still at
risk at time ti

2.4.8. Estimation (Maximum Likelihood Estimation): To estimate the coefficients
β2X2 · · · βpXp we maximize the likelihood function L(β) with respect to β us-
ing iterative optimization techniques. Common methods include the Newton-
Raphson algorithm and the gradient descent algorithm. The goal is to find the
values of β that maximize the likelihood function. To iteratively process for
estimating β in the Cox PH model:initialize β with values (e.g., β = 0). Then
calculate the partial derivative of the log- likelihood function with respect to each
βi (where i = 1, 2,· · · p). Update each βi using the optimization algorithm, such
as the Newton-Raphson update rule or gradient descent. We repeat until conver-
gence is achieved. Convergence is typically assessed based on the change in the
log- likelihood or parameter estimates between iterations. Then estimated β val-
ues represent the coefficients of the Cox PH model. The estimated coefficients β
provide information about the magnitude and direction of the covariate effects on
the hazard rate. Positive values of β indicate an increased hazard, while negative
values indicate a decreased hazard associated with the corresponding covariate.
Note that the specific optimization method and implementation details may vary
depending on the software or programming environment used for Cox PH model
estimation.
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Figure 1. Lagjma Double Logo

3. Result

This section aims to apply the Bayesian technique to reveal the best model for
the survival analysis of diabetes patients under study, the descriptive statistics
for some variables of interest considered in this study, the Kaplan Meier analysis,
and the posterior coefficients for coded version of the best model.

3.1. Data Source. The data is sourced from Lagos General Hospital, a promi-
nent healthcare institution in Lagos State, Nigeria. This public hospital plays a
significant role in healthcare delivery, and its diverse patient population provides
us with a valuable dataset. The data is basically those who had been diagnosed
of Type II Diabetes.

3.2. Descriptive Statistics. From Table 1 below, the summary of the key at-
tributes and measurements of the dataset can be seen as it provides the minimum,
first quartile (25th percentile), median (50th percentile), mean (average), third
quartile (75th percentile), and maximum of each variable. It shows insights into
the age distribution of individuals, with the youngest being 18 years old and the
oldest 90 years. The median age is 54 years, while the mean age is approximately
53.82 years. Also, the dataset includes information on the dates of diagnosis, with
the earliest recorded diagnosis on January 1, 2021, and the latest on December
31, 2022. The median diagnosis date is February 2, 2022. The gender column is
represented by numeric values, with 0 indicating the female gender category and
1 the male gender category. On average, the dataset appears to be somewhat
balanced in terms of gender, with a mean value of approximately 0.479. Ad-
ditionally, the dataset includes Body Mass Index (BMI) measurements, ranging
from a minimum of 16.50 to a maximum of 40.50.

The median BMI is 28.40, and the mean BMI is approximately 28.42. Sys-
tolic Blood Pressure (SBP) measurements range from a minimum of 80.0 to a
maximum of 170.0, with a median value of 125.0 and a mean of 124.5. Dias-
tolic Blood Pressure (DBP) measurements range from 60.00 to 100.00, with a
median value of 80.00 and a mean of approximately 79.94. The ”TREATMENT”
summary shows different treatment levels, with values 0 representing Placebo,
1 representing Glibebdemid, and 2 representing Metformin. The dataset indi-
cates that individuals have received treatments ranging from 0 to 2, with a mean
treatment level of approximately 1.016. The ”S-STATUS” column represents
the Survival Status variable of each individual, with values 0 and 1 representing
death and alive. On average, individuals in the dataset appear to have a status of
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Table 1. Descriptive Statistics on Socio-Econpmic and
Treatment-Related Data.

Par./Covarites Min. 1st Quartile Median Mean 3rd Quartile
AGE 18 37 54 53.82 71
DIAGNOSTIC DATE 01/01/2021 18/07/2021 02/02/2022 18/01/2022 28/07/2022
TIME 12:00:00am 12:00:00am 12:00:00am 12:51:35am 12:00:00am
GENDER 0 0 0 0.479 1
BMI 16.5 22.2 28.4 28.42 34.4
SBP 80 104 125 124.5 147
DEP 60 70 80 79.94 90
LOCATION 0 0 1 0.5292 1
TREATMENT 0 0 1 1.086 2
S STATUS 0 0 0 0.477 1
S TIME 5 278 522 523.6 764

approximately 0.477. This indicates that 47.7% of the patients who were under
treatment died after the final stage of treatment. Finally, the ”S-TIME” column
represents the Survival time. The time values range from a minimum of 5.0 days
to a maximum of 1022.0 days, with a median value of 522.0 days and a mean of
523.6 days.

The estimation of confidence interval of Table 2 below shows the number
recorded (here 768 patients), the number of patients, the number of events (397
death), the median control time is (7.51 years), which is about 8 years and a 95%
confidence interval for the median is between 7.16 and 7.98.

Table 2. Confidence Interval Estimation.

Par./N Events Median 0.95 LCL 0.95 UCL

768 397 7.51 7.16 7.98

Kaplan-Meier is a non-parametric method to estimate the survival probabilities
at a given time instant. To estimate the survival probability at a given time, we
make use of the risk set that includes the information we have on a censored
rather than simply throw away all the information on the censored person. The
data structure used to do KM estimation is ordered failure times. This is one
aspect that is very different from the usual statistical methods. Figure 1 below
shows the Kaplan-Meier estimate of the survival function using diabetes data.
This function is a non-increasing step function, and the lines explicitly show the
right-continuity. For example, C(5) = 0.7, while C(4) = 0.8 In practice, the
Kaplan-Meier function is plotted as a step function, with the indicators of right-
continuity not shown. The median control time is at t = 7.5, which is the smallest
time t such that —t— ≤ 0.5.

Table 3 below shows that there is no statistically significant difference in sur-
vival (treated) between groups.

In table 4 below, Age (Coef = 0.004, OR = 1.004, p = 0.369): Age has a
positive coefficient, but it is very small (0.004), and the p-value is 0.369, which
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Table 3. The Chi-square table of events.

N Observed Expected (O − E)2/E (O − E)2/V

Group= 0 630 155.2 159.6 0.19 0.885
Group= 1 136 43.8 39.4 0.482 0.885

Chi-square = 0.9 df = 1, P-value = 0.3

is not statistically significant. This suggests that age may not have a significant
effect on the outcome in this model. The odds ratio (1.004) indicates a very slight
increase in the odds of the outcome with increasing age.

BMI (Coef = -0.007, OR = 0.993, p = 0.321): BMI has a negative coefficient,
suggesting that higher BMI might reduce the odds of the outcome, but the effect
is not statistically significant (p = 0.321). The odds ratio of 0.993 means a very
slight decrease in the odds of the outcome for each unit increase in BMI, but this
is not significant.

Insulin (Coef = 0.0002, OR = 1.000, p = 0.699): Insulin has an almost neg-
ligible coefficient and an odds ratio of 1, suggesting no meaningful effect on the
outcome. The p-value (0.699) confirms that this predictor is not significant in
the model.

Gender (Coef = 0.079, OR = 1.082, p = 0.443): Gender has a positive coef-
ficient, suggesting that being male (assuming 1 represents male) might slightly
increase the odds of the outcome. However, the p-value (0.443) is not statisti-
cally significant, indicating that gender may not have a meaningful impact in this
context.

Blood Pressure (Coef = -0.001, OR = 0.999, p = 0.642): Blood pressure has a
very small negative coefficient, with an odds ratio close to 1. The p-value of 0.642
suggests that blood pressure is not significantly associated with the outcome in
this model.
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Glucose (Coef = 0.003, OR = 1.003, p = 0.157): Glucose has a positive co-
efficient, and the odds ratio (1.003) suggests a slight increase in the odds of the
outcome as glucose levels increase. However, with a p-value of 0.157, this is not
statistically significant.

Glycemia (Coef = -0.011, OR = 0.989, p = 0.926): Glycemia has a negative
coefficient and a very small odds ratio (0.989), indicating that higher glycemia
levels slightly reduce the odds of the outcome, but the effect is not significant (p
= 0.926).

Table 5: Model Selection Test.
DF P-value

Concordance 0.536
Standard Error 0.017
Likelihood Ratio Test 6.14 7 0.5
Wald Test 6.18 7 0.5
Score)logrank) Test 6.18 7 0.5

All the model evaluation tests (Likelihood ratio test, Wald test, and Score test)
in table 5 above have p-values of 0.5, which are much greater than the conventional
significance level (e.g., 0.05). This indicates that the predictors in the model
(age, BMI, insulin, etc.) do not significantly improve the model′s ability to
predict the outcome. The concordance of 0.536 suggests that the model has poor
discriminatory power, meaning it does not effectively distinguish between those
who experience the event and those who do not. The likelihood ratio, Wald
and Score (logrank) test above indicates that the model with predictor variables
provides a better fit to the data. In other words, the predictor variables are
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Table 6: Posterior coefficients for coded version of Diabetic Additive
Constant Hazard Model.

β HR(95% C.I for HR) Wald.test P-value

AGE -0.0023 1(0.99-1) 1.2 0.28
GENDER -0.065 0.94(0.78-1.1) 0.49 0.48
BMI 0.0021 1(0.99-1) 0.1 0.75
SBP 3.00E-04 1(1-1) 0.03 0.86
DBP 0.004 1(1-1) 1 0.31
LOCATION -0.088 0.92(0.76-1.1) 0.9 0.34
TREATMENT0.068 1.1(0.96-1.2) 1.4 0.23

associated with survival (treated). In table 6 below Age has a slightly negative
effect on the hazard, but the hazard ratio is 1, and the p-value (0.28) shows no
statistically significant effect. Gender shows a non-significant 6% reduction in
hazard for females, with a p-value of 0.48, while BMI, systolic and diastolic blood
pressure all have negligible effects, as indicated by their hazard ratios of 1 and
high p-values. Both location and treatment slightly influence hazard, but neither
is statistically significant (p-values of 0.34 and 0.23, respectively), meaning that
none of these predictors show a strong impact on the hazard in this model.

4. Coclusion

This study highlights key survival predictors in diabetes patients at Lagos
State General Hospital, with findings revealing that the median survival time
post-diagnosis is 7.5 years, where 50% of the patients survive at least this long.
While age slightly increases the hazard rate by 0.4 %, BMI reduces it by 0.7 %,
and insulin has a minor impact; however, none of these effects are statistically
significant. Kaplan-Meier analysis shows a steep decline in survival probability
in the early years post-diagnosis, emphasizing the critical importance of early
management.

Bayesian survival analysis, including Weibull and log-logistic models, confirms
the robustness and predictive accuracy of these findings, offering valuable in-
sights for diabetes management in similar healthcare settings. Posterior predictive
checks confirmed the adequacy of the Bayesian models, showing good agreement
between observed data and data simulated from the posterior predictive distri-
bution. Cross-validation results further supported the predictive accuracy of the
models, indicating that the findings are robust and generalizable. The model
selection tests, including the likelihood ratio, Wald, and Score (logrank) tests,
suggest that the model with predictor variables provides a better fit to the data,
indicating an association between predictor variables and survival (treated). The
CoxPH summary statistics shed light on the impact of different variables on the
hazard rate for diabetes, highlighting age, gender, and insulin as notable contrib-
utors. However, the results indicate that gender and various other factors are
not statistically significant predictors of the outcome. The model selection tests
further validate the importance of including predictor variables in the analysis,
emphasizing their association with patient survival. Above insights can guide
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healthcare practitioners and policymakers in designing more effective diabetes
management strategies, ultimately reducing the burden of diabetes and improv-
ing patient outcomes in Lagos State, Nigeria and similar settings.

Figure 2. Lagjma Single logo
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