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MATHEMATICAL MODELING OF CHOLERA TRANSMISSION
IN EPIDEMIC AND ENDEMIC SETTINGS WITH CONTROL

STRATEGIES

SUNDAY NWOKPOKU ALOKE∗, PATRICK AGWU OKPARA, NNAEMEKA MAJINDU,
AND NELSON NNAMDI EZIEKE

Abstract. One of the most serious health issues in the world today is cholera,
particularly in poorer nations with poor access to clean water. We have ex-
amined the distribution of cholera in both endemic and epidemic settings in
this article. We develop the mathematical model of the dynamics of cholera
transmission known as SEIRH with controls. The time-dependent control
mechanisms (vaccine, water purification, and sanitation) that govern the dis-
ease’s transmission and management were incorporated into the model. It
was possible to acquire the potential key measure R0, a threshold value used
to forecast the prognosis of a disease. The stability of the endemic disease
equilibrium point (EEP ) and the cholera-free equilibrium point (DFEP ) was
examined. If R0 is less than 1, then DFEP is locally asymptotically stable
(LAS), and EEP is globally asymptotically stable (GAS) when R0 is greater
than 1. The impact of control measures on virus spread was investigated, and
the optimal control value that minimizes the objective function was also inves-
tigated using Pontryagin’s maximum principle. The model simulation shows
that the methods used have a positive impact on public health by lowering
morbidity and mortality. Cholera incidence can be considerably decreased by
effective prevention and control measures, which will lower rates of morbidity
and mortality.

1. Introduction

Cholera is a serious diarrheal disease caused by the bacterium Vibrio cholerae
[1]. According to the WHO and CDC, the disease is spread through contaminated
water or food and occurs in areas with poor sanitation and limited access to clean
water. Cholera can cause severe acute watery diarrhea and rapid dehydration due
to electrolyte imbalance, which can lead to life-threatening complications if not
treated quickly. The review in [2] explored and identified the factors contributing
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to the re-emergence of cholera in Africa and the response strategies used to con-
tain the problem, and collected the limited data needed to inform disease control
and eradication policies. They reviewed 65 valid articles reporting risk factors for
recurrent cholera outbreaks, endemicity and response strategies and found that
trans-boundary migration, ecological reservoirs, socioeconomic factors, climate
change and political instability are factors contributing to persistent and recur-
rent outbreaks of cholera in Africa. The review also identified specific response
strategies and modeling approaches to help prevent and limit the impact of these
outbreaks. Wolff et al. [3] described the theory of cholera risk and protection, de-
veloped inclusion criteria, searched for and selected studies, assessed the quality of
the evidence, and established associations between seven hypothesized protective
factors and eight factors. We conducted a systematic review. Exposure to water,
sanitation and hygiene (WASH) to promote (risk factors) or stop (protective fac-
tors) the spread of cholera. To better understand the complex epidemiology of
cholera, several mathematical models have been formulated and published. For
example, the model shown in [7] specifically considers the concentration of Vibrio
cholerae in the water supply in a typical SIR kinetic model. The research car-
ried out in [6] examined the maintenance of disease-free and endemic balance to
study the epidemiology of cholera complex epidemic and endemic diseases. This
study demonstrates the real-world application of the model by examining a re-
cent cholera outbreak in Zimbabwe. We also present numerical simulation results
to verify the analytical predictions. Therefore, our goal is to determine how to
suppress the spread of the disease using control measures (vaccination, water pu-
rification, sanitation) as a function of time. In addition, Pontryagin’s maximum
principle is used to investigate the impact of control measures on virus spread,
how control levels reduce spread, and the optimal control value that minimizes
the objective function. Recent studies have shown that immunity can be lost over
weeks to months [15], [19].

1.1. Literature Review. In developing countries, diarrheal diseases are a lead-
ing cause of infant mortality due to lack of access to clean drinking water and
sanitation [21]. Lemos-Paiao et al, in [20] proposed and analyzed the susceptible-
infectious-isolated-recovered (SIQR) model under the assumption that infected
individuals remain isolated during the treatment period. The susceptible-infected-
recovered (SIR) epidemiological model proposed by [15] considers two classes of
bacterial concentrations (highly infected and low infected) and two classes of
infectious individuals (asymptomatic and symptomatic). Here, the authors use
optimal control theory, parameter sensitivity analysis, and numerical modeling
to compare the cost-effective trade-off of multiple intervention methods for two
endemic populations. Wang and Modnak [22] also consider an SIR-type model
using Vibrio cholerae concentrations in the environment. The model includes
three control measures: vaccination, medical care and water purification. Bal-
ance point stability analysis is performed when the control is given a constant
value. They also study a general cholera model with time-dependent control,
prove the existence of a solution to the optimal control problem, and derive the
necessary optimality conditions based on Pontryagin’s maximum principle. In a
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SIR type model, the authors [13] incorporate therapy, immunization, quarantine,
and public health education campaigns as control methods. The concentration
classes of the bacteria are also considered by the model. They analyze the po-
tential community benefits of these measures by comparing reproductive rates
resulting from education, vaccination, and treatment and combined reproductive
rates with baseline reproductive rates. The Lyapunov functional technique is
used to analyze equilibrium stability. The main indicators of cholera prevalence
and reinfection are examined in this article along with stability analyses and
preventative measures like ”water purification and sanitation merged as a single
control” and ”vaccination” strategies that use Pontryagin’s maximum principle
method to lower infection rates and population exposure.

1.2. Assumptions of the Model.

(1) People of all ages living in areas with limited access to clean and safe
water are susceptible to cholera.

(2) People who live in unsanitary areas are prone to cholera.
(3) People who drink contaminated beverages, ice or bottled water are equally

susceptible to cholera.
(4) In cholera endemic region, everyone is susceptible.
(5) vaccinated infected individuals after recovery will not get infected for at

least two years.

2. Materials and Methods

2.1. Model Formulation. The population under study at time t is defined as
N(t). It is classified into five subsections: Susceptible (S) population, Exposed
(E) population, Infectious (I) population, Recovered (R) and Vibro cholera pop-
ulation H(t). Therefore, cholera model in this study is a combined system of
human populations and the environmental component H(t) and total population
of species is classified into: The human population Nh and Nb(t) are given as:

Nh(t) = S(t) + E(t) + I(t) +R(t).

Nb(t) = H(t).

In figure 1, the susceptible people (S), will move to the exposed compartment

(E) updating the number of persons in the exposed class λ = α1

(
H

κ+H
+ I

)
,

Out of this exposed ones, α2E individuals are moved from E compartment to
the infectious class (I) and α3I are moved out of the infectious compartment to
the recovery group. The class H is the Vibrio Cholerae population concentration
in the aquatic environment at a time t. The infectious individuals shed Vibrios
cholerae at a rate ρ and by asexual reproduction, Vibrio cholerae bacteria re-
produce at the rate a. The population of the pathogenic bacteria is reduced by
proper sanitation and or by infectious class compliance to hygiene principles at a
rate τ. It is noted that an individual must consume at least the concentration, κ,
of Vibrios cholera equivalent to an amount that increases the possibility of being
infected to about 50% if they are to contact the infection. Overall, the human
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Figure 1. Model Diagram

populations is reduced by uniform natural death at a rate µ and the bacteria dies
naturally at the rate η.

Table 1. Meaning of parameters

Parameters Description
α0 Recruitment rate of human.
µ Natural death rate
α1 Exposure rate to contaminated water.
ω Exposed rate among individuals who avoid contracting the virus

due to a strong immunity
α2 Exposure rate of individuals to the cholera outbreak.
α3 Rate of recovery of infected persons
η Death rate induced of vibrio cholera.
φ Disease induced death rate of humans
ρ Contribution of infected persons to the number of vibriola cholera

in water environment.
κ Concentration of vibrio cholera in water bodies pave the way for

cholera transmission.
τ Infectious class compliance to hygienic principles.
α4 The rate at which individual susceptible rather than fully recovering
a Birth rate of Vibrio cholera.

2.2. Model Equation. Given the dynamics described in Figure 1, the following
system of ordinary differential equations, with non-negative initial conditions,



LAGJMA-2024/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 85

describes the dynamics of Vibrio cholera bacteria:

dS
dt

= α0 − λS + α2ωE − µS + α4R, S(0) = S0 > 0,
dE
dt

= λS − (α2 + µ)E, E(0) = E0 > 0,
dI
dt

= α2(1− ω)E − (α3 + φ+ µ)I, I(0) = I0 > 0,
dR
dt

= α3I − (α4 + µ)R, R(0) = R0 > 0,
dH
dt

= ρ(1− τ)I − (η − a)H, H(0) = H0 > 0.

 (2.1)

3. Existence and Uniqueness

Theorem 3.1. : Let R5
+ ∈ Ω denote the region of feasibility for the model equa-

tion (2.1). If the model equations (2.1) is continuous, then the existence and
uniqueness of the state variables (S(t), E(t), I(t), R(t), H(t)) ∈ Ω exist for all
t ≥ 0.

Proof. From model equation (2.1)

dS

dt
= α0 − λS + α2ωE − µS + α4R.

dS

dt
= α0 − α1

(
H

κ+H
+ I

)
S + α2ωE − µS + α4R.

w(t, S) =
dw

ds
= −α1

(
H

κ+H
+ I

)
− µ

Where w(t, s) and its derivatives is continuous. The application of Cauchy-
Lipschitz condition is employed to show existence and uniqueness of the model
equation.

| w(t, s1)− w(t, s2) | = | −α1

(
H

κ+H
+ I

)
s1 − µs1 + α1

(
H

κ+H
+ I

)
s2 + µs2 |

= | −α1

(
H

κ+H
+ I

)
− µ || s1 − s2 |

≤ | −1 || α1

(
H

κ+H
+ I

)
+ µ || s1 − s2 |

≤ | α1

(
H

κ+H
+ I

)
+ µ || s1 − s2 |

≤ L | s1 − s2 |

Where L = α1

(
H

κ+H
+ I
)

+ µ is the Lipschitz constant and following the same
argument, w(t, E), w(t, I), w(t, R), w(t,H) and their derivatives are continuous
respectively. Therefore, the model equations (2.1) all satisfied the Lipschitz condi-
tion; hence there exist a unique solution to the all state variables (S(t), E(t), I(t), R(t), H(t))
for all t ≥ 0 �

3.1. Basic Reproduction Number, R0. The reproduction number, R0 of the
model at ε0, is calculated by the application of next-generation matrix [5]. E, I
and H denote the infected classes, then the values of F and V represented the
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new infection terms and the transmission terms given as:
Writing the model in matrix form:

dX

dt
= f(x) − v(x),

Where

f(x) =

(λ)S
0
0

 , v(x) =

 (α2 + µ)E
−α2(1− ω)E + (α3 + φ+ µ)I
−ρ(1− τ)I + (η − a)H

 .

The Jacobian of f(x) and v(x) at the disease-free equilibrium point

ε0 =

(
alpha0
µ

, 0, 0, 0, 0

)
and |V | = (α2 + µ)(α3 + φ+ µ)(η − a).

On evaluating the dominant eigenvalue ρ(FV −1) of the matrix FV −1, the repro-
duction number (R0) is the spectral radius of the matrix FV −1 given as:
Therefore

R0 =
α0α1α2(1− ω)[κ(η − a) + ρ(1− τ)]

κµ(α2 + µ)(α3 + φ+ µ)(η − a)
. (3.1)

4. Stability analysis

Here, the application of Stability analysis used to determine the behavior of
the model over time.

4.1. Local Stability of Cholera Free Equilibrium Point.

Theorem 4.1. The disease free equilibrium (DFE) Point ε0 is locally asymptot-
ically stable (LAS) whenever R0 < 1 but unstable whenever R0 > 1.

Proof. To analyze the stability at (DFE), we find the Jacobian matrix J of the
model equation 2.1 evaluated at ε0.

(Jε0 − Iy) =
−(µ)− λ α2ω 0 α4 0

0 −(α2 + µ)− λ 0 0 0
0 α2(1− ω) −(α3 + φ+ µ)− λ 0 0
0 0 α3 −(α4 + µ)− λ 0
0 0 ρ(1− τ) 0 (a− η)− λ

 = 0

(−(µ)− y)(−(α2 + µ)− y)(−(α3 + φ+ µ)− y)(−(α4 + µ)− y)((a− η)− y) = 0
Solving this polynomial, the eigenvalues are given by

λ1 = −µ
λ2 = −(α2 + µ)

λ3 = −(α3 + φ+ µ)

λ4 = −(α4 + µ)

λ5 = −(η − a)

If R0 < 1 and the eigenvalues are all non positive, hence ε0 is locally asymptoti-
cally stable otherwise unstable. �
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4.2. Global Stability of the cholera Equilibrium point.

Theorem 4.2. Suppose that R0 < 1, then the cholera-free state which occurs at
the point ε0 for the model equation (2.1) is globally asymptomatic stable otherwise
unstable at R0 > 1.

Proof. The global asymptomatic behavior of the model (2.1) is carried out by
the application of a suitable Lyapunov function by considering the derivatives of
those infectious compartments of the model equations, i.e dE

dt
, dI
dt
, dH
dt

.

Setting, dI
dt

= 0 = dE
dt

dI

dt
= α2(1− ω)E − (α3 + φ+ µ)I = 0

Then

E =
(α3 + φ+ µ)I

α2(1− ω)
(4.1)

dE

dt
= α1

(
H

κ+H
+ I

)
S − (α2 + µ)E = 0

Then

E =
α1

(
H

κ+H
+ I
)
S

(α2 + µ)
(4.2)

Equating equations (4.2)and (4.1), we have

I =
α1α1(1− ω) H

κ+H
S

(α2 + µ)(α3 + φ+ µ)− α1α2S(1− ω)
(4.3)

dH

dt
= ρ(1− τ)I − (η − a)H. (4.4)

Substituting I in equation (4.3) into equation (4.4) at ε0 =

(
α0

µ
, 0, 0, 0, 0

)
.

dH

dt
=

ρ(1− τ)α1α2S(1− ω) H
κ+H

(α2 + µ)(α3 + φ+ µ)− α1α2S(1− ω)
− (η − a)H

Setting H
κ+H
≤ H

κ

dH

dt
≤ α0α1α2ρ(1− τ)(1− ω)H

κµ(α2 + µ)(α3 + φ+ µ)− κα1α2(1− ω)
− (η − a)H

≤ α0α1α2ρ(1− τ)(1− ω)H − (η − a)Hκµ(α2 + µ)(α3 + φ+ µ) + (η − a)κα0α1α2(1− ω)

κµ(α2 + µ)(α3 + φ+ µ)− κα0α1α2(1− ω)

≤ Hα0α1α2(1− ω) [ρ(1− τ) + κ(η − a)]− (η − a)Hκµ(α2 + µ)(α3 + φ+ µ)

κµ(α2 + µ)(α3 + φ+ µ)− κα0α1α2(1− ω)
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Putting R0 from equation (3.1), then

dH

dt
≤

[R0 − 1]

(
H(η − a)κµ(α2 + µ)(α3 + φ+ µ)

)
κµ(α2 + µ)(α3 + φ+ µ)− κα0α1α2(1− ω)

dH

dt
<

[R0 − 1]

(
H(η − a)κµ(α2 + µ)(α3 + φ+ µ)

)
κµ(α2 + µ)(α3 + φ+ µ)

Therefore,

dH

dt
= [R0 − 1]

(
(η − a)H

)
Whenever R0 < 1, dH

dt
turned out to be negative semi-definite while its negative

definite when R0 > 1. According to LaSalle’s variance principle, this means that
the no-cholera equilibrium is globally symptomatically stable. �

4.3. Endemic Equilibrium. Given the model system 2.1; there exist a unique
endemic equilibrium point denoted by ε∗ = (S∗, E∗, I∗, R∗, H∗); representing the
equilibrium point with all positive components, (S∗, E∗, I∗, R∗, H∗) 6= (0, 0, 0, 0, 0).
We therefore calculate the endemic equilibrium point by setting the five deriva-
tives equal to zero and finding solutions of the equations give:

S∗ = − α0(α2 + µ)(α3 + φ+ µ)(α4 + µ)

α2ωλ(α3 + φ+ µ)(α4 + µ) + α4α3(1− ω)− λ+ µ)(α2 + µ)(α3 + φ+ µ)(α4 + µ)

E∗ = − λα0(α3 + φ+ µ)(α4 + µ)

α2ωλ(α3 + φ+ µ)(α4 + µ) + α4α3(1− ω)− λ+ µ)(α2 + µ)(α3 + φ+ µ)(α4 + µ)

I∗ = − α0α2λ(1− ω)(α4 + µ)

α2ωλ(α3 + φ+ µ)(α4 + µ) + α4α3(1− ω)− λ+ µ)(α2 + µ)(α3 + φ+ µ)(α4 + µ)

R∗ = − α0α2α3λ(1− ω)

α2ωλ(α3 + φ+ µ)(α4 + µ) + α4α3(1− ω)− λ+ µ)(α2 + µ)(α3 + φ+ µ)(α4 + µ)

H∗ = − α0α2ρλ(1− τ)(1− ω)(α4 + µ)

(a− η)[α2ωλ(α3 + φ+ µ)(α4 + µ) + α4α3(1− ω)− λ+ µ)(α2 + µ)(α3 + φ+ µ)(α4 + µ)]

4.4. Local Stability of Cholera endemic equilibrium.

Theorem 4.3. Whenever R0 > 1, then the cholera endemic equilibrium (CEE)
at ε∗ is locally asymptotically stable (LAS).

Proof. To analyze the stability at (DFE), we find the Jacobian matrix J of the
model equation 2.1 evaluated at ε∗.

(Jε∗ − Iλ) =


−(A+ µ)− λ α2ω −α1S

∗ α4 −B
A −C − λ α1S

∗ 0 B
0 α2(1− ω) −D − λ 0 0
0 0 α3 −E − λ 0
0 0 ρ(1− τ) 0 F − λ

 = 0
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Where

A = α1

(
H∗

κ+H∗ + I∗
)
, B =

(
α1κS∗

(κ+H∗)2

)
, C = (α2 + µ), D = (α3 + φ + µ), E =

(α4 + µ), F = (a− η)
The polynomial equation for (Jε∗ − Iλ) i calculated thus

a5λ
5 + a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0 (4.5)

Where

a5 = 1

a4 = (A+ µ) + (α2 + µ) + (α3 + φ+ µ) + (α4 + µ) + (η − a)

a3 = (A+ µ)

(
(α4 + µ) + (α3 + φ+ µ) + (η − a)

)
+ (α4 + µ)

(
(α2 + µ) + (α3 + φ+ µ) + (η

− a)

)
+ (α2 + µ)

(
(α3 + φ+ µ) + (η − a)

)
+ (α3 + φ+ µ)(η − a) + α1α2S

∗(ω − 1)− α2ωA

a2 = (A+ µ)(α4 + µ)

(
(α3 + φ+ µ) + (α2 + µ) + (η − a)

)
+ (α3 + φ+ µ)(α4 + µ)

(
(α2 + µ)

+ (η − a)

)
+ (α2 + µ)(η − a)

(
(α4 + µ) + (α3 + φ+ µ) + (A+ µ)

)
+ (A+ µ)(α3 + φ+ µ)(η

− a) + α1α2(ω − 1)S∗
(

(A+ µ) + (α4 + µ) + (a− η)

)
α1α3ρκS

∗

(κ+H∗)2
(1− ω)(1− τ)− α2ωA

(
(α3

+ φ+ µ) + (α4 + µ) + (η − a)

)
+ α1α2(ω − 1)AS∗

a1 = (α4 + µ)(α3 + φ+ µ)(A+ µ)

(
(α2 + µ) + (η − a)

)
+ (α2 + µ)(α4 + µ)

(
(α3 + φ+ µ)(η − a)

+ (A+ µ)(η − a)

)
+ α1α2S

∗(ω − 1)

(
(A+ µ)(α4 + µ) + (A+ µ)(a− η) + (α4 + µ)(a− η)

)
+

α1α2ρκS
∗(1− ω)(1− τ)

(κ+H∗)2

(
(A+ µ) + (α4 + µ)

)
+ α2ωA

(
(a− η)(α3 + φ+ µ) + (α4

+ µ)(a− η)− (α3 + φ+ µ)(α4 + µ)

)
+ α1α2S

∗(A)(ω − 1)

(
(α4 + µ) + (η − a)

)
+
α1α2ρκS

∗

(κ+H∗)2

(ω − 1)(1− τ)A+ α3α2(1− ω)A

a0 =α2α3α4(1− ω)(a− η)A+
ρα1α2κS

∗

(κ+H∗)2
A(1− ω)(α4 + µ)(1− τ) + (A+ µ)(α2 + µ)(α3 + φ+ µ)

(α4 + µ)(η − A) + (A+ µ)(α4 + µ)(η − a)(1− ω)α1α2S
∗ +

κρα1α2S
∗

(κ+H∗)2
(A+ µ)(α4 + µ)

(1− ω)(τ − 1) + α2ω(A)(α2 + φ+ µ)(α4 + µ)(η − a) + α1α2A(1− ω)(α4 + µ)(η − a)
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Hn =



a1 a3 a3 0 0
a0 a2 a4 0 0
0 a2 a3 a5 0
0 a0 a2 a4 0
0 0 a1 a3 a5
0 0 a0 a2 a4
. . . . .


(4.6)

The equation (4.5) is asymptotically stable given that all the principal minors of
(4.6) is positive and non-zero by application of Routh-Hurwitz stability criterion.
Then on simplification, the outcome of the principal minors are: δ1 = a1, δ2 =
a1a2 − a0a3, δ3 = a1(a2a3 − a1a4), δ4 = a1a2(a3a4 − a2a5) − a1a4(a1a4 − a0a5) −
a0a3(a3a4− a2a5) + a0a5(a1a4− a0a5), δ5 = a5δ4. If δ5 > 0, δ4 > 0, δ3 > 0, δ2 > 0,
δ1 > 0 and R0 > 1 then by of Routh-Hurwitz criterion, the endemic equilibrium
ε∗ of the system (2.1) is locally asymptotically stable. �

5. Optimal Control Problem

The model equation (2.1) is modified by introducing controls u and v which
stands for ”water treatment, sanitation, and hygiene practices” and ”Vaccination
strategies” .

dS
dt

= α0 − uλS + α2ωv − µS + α4R.
dE
dt

= uλS − (α2 + µ)E.
dI
dt

= α2v(1− ω)E − (α3 + φ+ µ)I.
dR
dt

= α3I − (α4 + µ)R.
dH
dt

= ρ(1− τ)I − (η − a)H.

 (5.1)

The optimal control problem is aimed at calculating the level of controls which
limits the spread and transmission of cholera in endemic region. Here, we sort
for the optimal values u and v∗ of the control u, and v along time t such that
the associated state trajectories S∗, E∗, I∗, R∗ and H∗ are solutions of the model
(5.1) equations and u∗(.), and v∗(.) minimizes the objective functional given as

J(.) = min
u,v

∫ T

0

I(t)− (u2 + v2)dt.

The objective function above contains the population of infectious with the
severity of the side effects of the control strategies ’u and v’. Hence, setting
0 ≤ u < Umax and 0 ≤ v < Umax. Appliction of Pontryagins maximum principle
to the Hamiltonian was used to infer the conditions necessary for the optimal
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control, where

L = I − (u2 + v2) + λS{α0 − uα1

(
H

κ+H
+ I

)
S + α2ωvE − µS + α4R}

+ λE{uα1

(
H

κ+H
+ I

)
S − (α2 + µ)E}

+ λI{α2v(1− ω)E − (α3 + φ+ µ)I}
+ λR{α3I − (α4 + µ)R}
+ λH{ρ(1− τ)I + (a− η)H}.

Theorem 5.1. Given the optimal controls u and v and solutions S∗, E∗, I∗, R∗

and H∗ of the control system that maximizes J(u, v) there exist adjoint variables

valid
∂λj
∂t

= −∂L
∂t
. The transversality conditions

λS(T ) = λE(T ) = λI(T ) = λR(T ) = λH(T ) = 0.

The optimality condition is given by ∂L(.)
∂u

= ∂L(.)
∂v

= 0. Furthermore, the optimal
control

u∗ = min

{
umax,max(0, 0.5(α1S(λE − λS)

(
H

κ+H
+ I

)}
,

v∗ = min {umax,max(0, 0.5((λS − λI)(α2ωE) + λIα2E)} .

Proof. Using the Hamiltonian, we obtain the adjoint variables λS, λE, λI , λR, and
λH by solving the system:

λ̇S = −∂L(.)

∂S
, λ̇E = −∂L(.)

∂E
, λ̇I = −∂L(.)

∂I
, λ̇R = −∂L(.)

∂R
, λ̇H = −∂L(.)

∂H
.

Thus,

λ̇S = uα1

(
H

κ+H
+ I

)
(λS − λE) + λSµ,

λ̇E = (λI − λS)α2ωv + λE(α2 + µ)− λIα2v,

λ̇I = −1 + (λS − λE)uα1S + λI

(
(α3 + φ+ µ)− ρ(1− τ)

)
− λRα3,

λ̇R = λR(α4 + µ)− λSα4,

λ̇H = (λS − λE)

(
uα1

κ

(κ+H)2

)
S + λH(η − a).

λS(T ) = λE(T ) = λI(T ) = λR(T ) = λH(T ) = 0.

The optimal controls u∗ and v∗ are derived from the stationary conditions

∂L(.)

∂u
=
∂L(.)

∂v
= 0.
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For the optimization problem, the optimal control is characterized in compact
form as:

u∗ = min

{
umax,max(0, 0.5(α1S(λE − λS)

(
H

κ+H
+ I

)}
,

v∗ = min {umax,max(0, 0.5((λS − λI)(α2ωE) + λIα2E)} .
�

6. Result

7. Numerical Simulation

To simulate the state and adjoint equations, we therefore apply the numerical
approach of the Forward-Backward Sweep method and MATLAB script written
to implement this method through Runge-Kutta fourth order method. A MAT-

Table 2. Meaning of parameters

Parameters values Reference

α0 9.13× 10−3 [11]
µ 0.025 [12]
α1 0.02 [18]
ω (00.9] Assumed
α2 0.054 Assumed
α3 0.2/day [13]
η 0.33/day [14]
φ 0.012/day [17]
ρ 0.0031 Assumed
κ 106(cell/ml) [16]
τ 0.85 [14]
α4 0.001096 [15]
a 0.028 [12]

LAB script was written to solve the system of ODEs using the ode45 solver, plots
the results. The values of the parameters and initial conditions of the model are
adjusted as needed to analyze the model at different control level and observe the
epidemic scenarios.

8. Discussion of Result

Cholera is a growing concern worldwide, especially in developing countries
where access to clean water is limited. Looking at the graphs below, the cholera
infection rate in figures 3, 4, 5, 6 and 7 denote the group with controls. The per-
centage increase in control measures shows a significant decrease in the number
of exposed and the number of infected individuals, that is in figure 2, u = 0 and
v = 0; figure 3, u = 0.2(20%) and v = 0.3(30%); figure 4, u = 0.3(30%) and
v = 0.4(40%); figure 5, u = 0.4(40%) and v = 0.6(60%); figure 6, u = 0.6(60%)
and v = 0.75(75%) and figure 7, u = 0(0%) and v = 0.4(40%). Figure (7) shows
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Figure
2. Graph of
the model pop-
ulation without
controls

Figure 3.
Graph of the
model popula-
tion with control

Figure
4. Graph of
the model pop-
ulation with
control

Figure
5. Graph of
the model pop-
ulation with
control

Figure
6. Graph of
the model pop-
ulation with
control

Figure
7. Graph of
the model pop-
ulation with
control
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a significant reduction in the number of exposed and infected individuals com-
pared to other indicators with minimal controls. Levels of exposed and infected
individuals in the control plots are lower than in figure (2) with no controls at all.
This highlights the importance of control measures in controlling the spread of
cholera. The effectiveness of a single control strategy in figure 7, shows a signifi-
cant reduction only in cholera patients. Figures 3, 4, 5 and 6 show the efficacy of
the joint control measures in curtailing the spread of the infection in the popula-
tion. Cholera cannot be eradicated or controlled without strict control measures.
We have learned from this study and the results that educating the public about
the various ways in which cholera can spread is one of the most crucial aspects in
stopping its spread. If we respond to this work’s call, we can eradicate or curtail
cholera in our society; if not, cholera outbreaks will still occasionally occur in
developing countries. Strictly speaking, it is evident that cholera can re-infect
recovered people if they are exposed to the disease again. This occurs because
cholera leaves the body without a lasting immunity.

9. Conclusion

The epidemiology and management of cholera in endemic and endemic locations
are reviewed in this article. According to the SEIRH data, fewer persons are ex-
posed to or contract cholera when control measures are strengthened. This study
demonstrates that the efficacy of cholera prevention tactics aligns with suggested
preventative actions. In conclusion, studies have demonstrated that immuniza-
tion, water filtration, and hygienic practices can effectively reduce cholera and
lessen its impact. By boosting the immunity of those who have been vaccinated
against cholera, vaccinations significantly reduce the disease’s potential to spread,
as do appropriate sanitation and water purification practices. In order to manage
cholera epidemics and eventually eradicate the illness, a thorough strategy must
be put in place. According to the model’s findings, which indicate that sanitation
and vaccination significantly lowers infection rates, and expanding access to clean
water in cholera-prone areas is important.
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