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THE MODIFIED RANDOM WALK DISTRIBUTION 

ADAMU LATEEF1 AND FELIX FAMOYE  

 

ABSTRACT: This study presents a modification to a two-parameter distribution, yielding a discrete 

distribution termed the modified random walk distribution. This modification is derived from the random 

walk distribution and falls within the family of Lagrangian probability distributions. Comprehensive 

investigations are conducted on both the random walk distribution and its modified counterpart to discern 

and analyze their respective properties. Furthermore, a recursive formula for generating probabilities 

associated with this distribution is proposed. This research contributes to the understanding of the random 

walk distribution and provides insights into the implications of its modification. 

 

1. INTRODUCTION 

A discrete probability distribution describes the probability of each value of a discrete random 

variable, which takes on distinct, countable values such as whole or natural numbers with gaps 

between them. Maity (2018) described discrete probability distribution as the probability of 

occurrence of each value of a discrete random variable. Classic distributions have historically 

played a pivotal role in modelling data across various domains, including engineering, actuarial 

science, environmental studies, medical sciences, biological research, demography, economics, 

finance, and insurance (Hossein, Pouya, & Ismail, 2016). 

Given the fundamental role of discrete distributions in these diverse fields, researchers have 

contributed numerous methodologies to generate novel families of distributions. One noteworthy 

addition to this collection is the discrete Lagrangian probability distribution, named in honour of 

the eminent French mathematician Joseph-Louis Lagrange (1736-1813). Lagrange's profound 

contributions to mathematics encompassed analysis, number theory, mechanics, applied 

differential calculus, and probability theory. Notably, Lagrange co-created the calculus of 

variation, deriving the Euler-Lagrange equations, and introduced the method of solving differential 

equations known as the variation of parameters. His impact also extends to calculus, where he 

formulated the Lagrange remainder to the Taylor series and provided formulae for the expansion 
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of a function f(z) in a power series of u when u = g(z). This paper delves into the discrete 

Lagrangian probability distribution and its implications for enhancing our understanding of various 

statistical phenomena. 

Lagrange’s expansion is the power series expansion of the inverse function of an analytic function, 

and it leads to general Lagrangian distributions (Imoto, 2016).  The research work by Imoto (2016) 

presented some theorems in which different sets of two analytic functions provide a Lagrangian 

distribution. 

Let ( )f z and ( )g z be two analytic functions of ,z  which are infinitely differentiable in 

1 1z−    and such that (0) 0g  . Lagrange (1736-1813) considered the inversion of the 

Lagrange transformation ( ) ,u z g z=  providing the value of z  as a power series in u , and 

obtained  

( )( )1

0,1 !

k
kk

zk

u
z D g z

k


−

==

 =
         (1.1) 

as power series expansion (Consul and Famoye 2006). 

The Lagrange expansions can be used to obtain very useful numerous probability models. A 

number of discrete probability distributions are now available, of which several of these 

distributions and their properties have been discussed by Consul and Famoye (2006). Also, 

theorems and proofs which characterize the Lagrangian distributions are provided. 

This paper presents an in-depth exploration of a discrete Lagrangian distribution, specifically 

identified as the random walk distribution. The analysis delves into the intricacies of this 

distribution, unravelling its unique characteristics and properties. Furthermore, the examination 

extends to encompass modifications of the random walk, shedding light on the implications and 

behaviours associated with such alterations. By systematically investigating these variants, 

valuable insights are provided into the broader understanding of discrete Lagrangian distributions 

and their nuanced applications. The comprehensive analysis presented enhances the knowledge of 

the random walk distribution and provides a foundation for exploring its modified forms and their 

implications in diverse fields. 

2. MATERIALS AND METHODS 

Lagrange Probability Distribution: The discrete Lagrangian probability distribution forms a 

very large and important class which contains numerous families of probability distributions 

(Consul & Famoye, 2006). The random walk distribution belongs to this class of distributions. The 

distribution is a product of the Lagrangian transformation of the function z = ug(z). The random 

walk distribution belongs to the Delta Lagrangian distributions of the first kind, referred to as the 

Delta L1 distribution. 

According to Consul and Famoye (2006), the discrete Lagrangian probability distributions of the 

first kind (L1) have been systematically studied in a number of papers by Consul and Shenton 

(1975). Several researchers have explored these areas of statistics and obtained various 
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generalizations of some discrete distributions. This section aims to review several relevant 

probability distributions pertinent to this research. 

2.1 Basic Lagrangian distribution 

Consul and Famoye (2006) gave the definition: let the function ( )g z be a successively 

differentiable function such that (1) 1g =  and (0) 0g  . The function ( )g z  may or may not be a 

pgf. Then, the numerically smallest root ( )z u=  of the transformation ( )z ug z=  defines a pgf 

( )z u= with the Lagrange expansion (1.1) in powers of u as 

 ( ) ( )( ) 1

01 !

x
xx

zx

u
z u D g z

x



−

==

= =        (2.1) 

if ( )( )1

0

0
xx

z

D g z−

=

  for all values of x.  

Therefore, the class of basic Lagrangian distributions has probability mass function (pmf) as  

𝑃(𝑋 = 𝑥) =
1

𝑥!
{𝐷𝑥−1(𝑔(𝑧))

𝑥
}
𝑧=0

, 𝑥 ∈ ℕ      (2.2) 

Some of the examples of the basic Lagrangian distributions are as follows: 

Borel Distribution 

The Borel distribution is a discrete probability distribution. It was named after the French 

mathematician Emile Borel. Tanner (1961) defined the distribution as a queuing process with 

random arrivals at rate q per unit time and constant service time  , the number of units served 

during a busy period. 

The pmf is given by  

( )
( )

1

, , 1,2,...
!

xxe x
P x x

x

 


−−

= =         (2.3) 

where q =  

The distribution in (2.3) was given by Borel (1942) and can be redefined by using the Lagrange’s 

inversion formula. Selecting ( ) ( )1z
g z e

 −
= , 0 1   in (2.2), the Borel distribution can be 

obtained. The mean and the variance are given by 

( )1





=

−
 and 

( )
2

3
1





=

−
  for ( )0,1 .     (2.4) 
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The Borel model satisfies the properties of under-dispersion and over-dispersion. The 

distribution is over-dispersed when   satisfies the inequality 
3

5 / 2 1
2

−   . It is under-

dispersed when 
3

5 / 2
2

  − and is equal-dispersion when
3

5 / 2
2

 = − .  

Consul Distribution 

The Consul distribution was introduced by Consul and Shenton (1975). A discrete random 

variable X is said to have Consul distribution if its pmf is given by  

( ) ( )
111

1
1

mx xx
mx

P X x
xx

 
− +− 

= = − 
− 

, 1, 2,...x =      (2.5) 

By using ( ) ( )g 1
m

z z = − +  in equation (2.2), the Consul distribution is obtained. The 

distribution in (2.5) reduces to the geometric distribution when m = 1. 

The mean and variance of the distribution are  

( )
1

1 m



=

−
 and 

( )

( )
2

3

1

1

m

m

 




−
=

−
.       (2.6) 

The Consul distribution satisfies the dual properties of over- and under-dispersion. The model is 

under-dispersed for all values of 1m  when
( )5 1

2


+
= , and is over-dispersed for all values of 

1m  when  2  (Zahoor, Adil & Jan 2017). Islam and Consul (1990) modified the Consul 

distribution and derived it as a bunching model in traffic flow through branching process and 

also discussed its applications to automobile insurance claims. 

Famoye (1997a) showed that the Consul distribution is the limit of zero-truncated generalized 

negative binomial distribution 

( ) ( ) ( ), , 1 / 1 1
m x x mx

x

m xm
P m

xm x


    



+ −+ 
 = − − −   +  

, 1,2,3,...x =   (2.7) 

as the parameter 1 → . The distribution is unimodal but not strongly unimodal for all values of 

1m  and 0 1   and the mode is at a point 1x = . 

Geeta Distribution 

The Geeta distribution belongs to the basic Lagrangian distributions with pmf given by  

( ) ( )1
11

1
1

x x x
x

P X x
xx




 


− −
− 

= = − 
+  

 , 1, 2,...x =     (2.8) 

The mean and variance of the Geeta distribution have been obtained as 
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The Geeta distribution satisfies the properties of over-dispersion and under-dispersion. Thus, for 

smaller values of , the Geeta distribution is under-dispersed and for larger values of 1  −  it 

is over-dispersed. The variance 2  equals the mean when

( ) ( )
2 2 21

3 1 3 1 4
2

     − = − + − +
  

 (Consul and Famoye, 2006). Other basic Lagrangian 

distributions include the Haight’s distribution, Teja distribution, Felix distribution, and Sunil 

distribution.  

2.2 Delta Lagrangian distribution 

The delta Lagrangian distribution is another class of Lagrangian distributions and can be 

obtained from the basic Lagrangian distributions by taking the n-fold convolutions of the basic 

Lagrangian distributions. One of the methods of obtaining a delta Lagrangian distribution is to 

put ( ) nf z z=  in the general Lagrangian expression  
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 under the transformation ( )z ug z= . The 

probability generating function (pgf) of the delta Lagrangian distribution becomes 
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The probability mass function of the delta Lagrangian distribution is given as  

( )
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( )( ) 0|
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P X x D g z
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, for , 1, 2,...x n n n= + +    (2.11) 

An example of the delta Lagrangian distributions is the Borel-Tanner distribution.  

Borel-Tanner distribution 

The Borel-Tanner distribution is an example of the delta Lagrangian distribution generalized 

from the Borel distribution. Tanner (1953) generalized the Borel distribution to show that the 

distribution of the number of units served in a busy period starting with an accumulation of k 

units. Tanner (1961) defined the generalized form as follows: Let k be a positive integer with 

parameter , then their sum  1 2 ... kW X X X= + + +  is said to have Borel-Tanner distribution. 

The pgf is given by ( )1
,0 1

z
e



−

   and the pmf is given as  
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The mean and variance of the Borel-Tanner distribution are 

1

k



=

−
 and 

( )
2

3
1

k



=

−
        (2.13) 

The Borel-Tanner distribution has been used extensively in the analysis of data pertaining to 

biological word frequency, queuing and other branching areas (Gupta, & Jain 1977). In 

considering the applications, Gupta and Jain (1978) compare the bivariate distribution of Borel-

Tanner with the bivariate negative binomial. Their work considers the probability distribution of 

the number of customers served in the busy period of a single server queue. Applications to traffic 

flow, semi-infinite discrete dam and branching processes are described. The result shows that in 

many situations the bivariate Borel-Tanner distribution provides a better fit than the bivariate 

negative binomial distribution. 

Other examples of the delta Lagrangian distributions are delta binomial distribution, delta Geeta 

distribution, random walk distribution, delta Katz distribution, delta-Felix, and delta-Teja 

distributions. 

2.3 General Lagrangian distributions  

Consul and Famoye (2006) gave the definitions of the general Lagrangian distributions as follows: 

Let ( )g z and ( )f z  be two analytic functions of z differentiable with respect to z, such that

( )0 0g  , ( )g 1 1= , ( )1 1f =  and  

( )( ) ( ) 1 '

0| 0
xx

zD g z f z−

=   for𝑥 ∈ ℕ.      (2.14) 

The pgf of the discrete general Lagrangian probability distribution, under the Lagrangian 

transformation ( )z ug z= , is given by ( ) k

k

k o

f z a u
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=

= in the form 
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The pmf of the general Lagrangian distributions becomes 

𝑃(𝑋 = 𝑥) = (
1

𝑥!
)𝐷𝑥−1{(𝑔(𝑧))

𝑥
𝑓 ′(𝑧)}|𝑧=0, 𝑥 ∈ ℕ.     (2.16) 

Some examples of the general Lagrangian distributions are Binomial Poisson, Poisson-binomial, 

generalized binomial, generalized Katz, modified Felix, and Shenton distributions. 

3. RESULT 

Result Random Walk Distribution: A random walk is a mathematical object, known as a 

stochastic or random process, which describes a path consisting of a succession of random steps 

on a mathematical space such as an integer. Lawler and Limic (2010) defined random walk as a 
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stochastic process formed by successive summation of independent, identically distributed random 

variables. The random walk is one of probability theory's most basic and well-studied topics. 

Consul and Famoye (2006) defined the random walk as a particle which is said to perform a simple 

random walk on a line when starting from an initial position ‘n’ (where n is an integer) on the line; 

it moves each time from its position either a unit step (+1) in a positive direction with some 

probability ‘p’ or a unit step (-1) in the negative direction with probability q = 1 - p. The walk is a 

discrete-time, which is a sequence of random variables. Various probabilities are assigned for the 

various possible mutually exclusive moves or jumps of the particle such that the sum of the 

probabilities is one. The average total displacement is zero. Random walks explain the observed 

behaviours of many processes and can serve as a model for stochastic activities. According to Xian 

et al. (2019), Random walks can be utilized to analyze and simulate the randomness of objects and 

to calculate the correlation among them, making this method useful for solving practical problems. 

Examples of random walks or random processes are the movement of particles, the motion of 

molecules in a solution, stock market fluctuations, electron diffusion in metals, fluctuations in 

crude oil prices, etc. 

Researchers who work with particle systems and other models that use random walks as a basic 

ingredient often need more precise information on random walk behaviour than that provided by 

the central limit theorems (Lawler & Limic, 2010). Random walks have many applications in fields 

such as ecology, computer science, physics, chemistry, economics, etc. Xia et al. (2019) provided 

reviews of classical random walks and quantum walks and introduced their applications in the field 

of computer science. Bhattacharyya et al. (2023) introduced the fundamental features of the simple 

random walk problem in one dimension, providing both analytical and numerical analyses of 

symmetric and asymmetric random walks. They also explored the probability of a walker returning 

to the starting point for the first time. There are various types of random walks and have been 

extensively studied in the literature, with significant contributions made to understanding their 

properties and applications. Notable works include those by Jain and Orey (1973), Weiss and 

Havlin (1986), Hills (2020), and Ahsanullah et al. (2023). Hills (2020) provide a comprehensive 

analysis of the statistical properties and theorems of various classes of random walks, using both 

analytical and numerical approaches. It also explores the applications of random walks and 

discusses different methods of analysis, beginning with an introduction to the types of random 

walks and their properties. However, the term random walk often refers to a special category of 

Markov chains or Markov processes, but many time-dependent processes are referred to as random 

walks. The number of different walks of n-steps where each step is 1+  or 1−  is 2n . For the simple 

random walk, each of these walks are equally likely. 

3.1 Definitions and Properties of the Random Walk Distribution 

Among the Delta Lagrangian (L1 ) distributions is the random walk distribution. The random walk 

distribution is obtained by taking the n-fold convolution of the probability generating function 
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(pgf) ( ) 2g z p qz= + . The probability mass function (pmf) of the delta Lagrangian distribution is 

written as ( )
( )

( ) 0|
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m
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where ( ) 2g z p qz= + , and substituting this into (3.1), we have 
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By simplifying the above, we have 
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But 2k x m= − , so that the power of z is zero in the expansion. 

So ( ) / 2k x m= − . (3.3) 

Substituting (3.3) into (3.2), we have  
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Equation (3.4) is the random walk distribution. 

3.2 Factorial Moments 

To derive the factorial moment, we introduce the Lagrangian transformation ( )z ug z= and find 

the derivative with respect to u. In this case, the pgf of the distribution is a power series in u 

given by 

( ) ( )( )f z f u= ,        (3.5) 

where ( )z u= . To obtain the factorial moment, we differentiate (3.5) with respect to u , then  

set 1u z= = . 
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Equation (3.7) is the first factorial moment 
(1) . For the second factorial moment, we have to 

differentiate (3.6) with respect to u ,  
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Substituting (3.6) and (3.10) into (3.9), we have, 
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= + + 

 − −      

   

( ) ( )
(2) 2 3

'' 2 ' ' ' ''

1 ' 1 '

f f g f g

g g


+
 = +

− −
 (3.11) 

Recall that, 

( ) mf z z= , 1( ) mf z mz − = , ( ) 2( ) 1 mf z m m z − = − . Hence,  

  f = 1, (1)f f =  = m, and f   = m(m-1). (3.12) 

( ) 2g z p qz= + , ( ) 2g z qz = , ( ) 2g z q = . Hence,  

 g = 1, g   = 2q and g   = 2q. (3.13) 

The above functions will be substituted where necessary to obtain the mean and variance. 

 

3.3 Mean and Variance of Random Walk  

The mean and variance of the random walk distribution in equation (3.4), can be obtained from 

the first and second factorial moments derived in equations (3.7) and (3.11).  

Mean 
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From the first moment, 
(1) =

( ) ( )

( )
1

'

1 '
u z

f z g z

ug z
= =

−  
  

 (1)

'

1 ' 1 2

f m

g q
 = = =

− −
, (3.14) 

by using (3.12) and (3.13). 

The mean of the random walk distribution is represented by equation (3.14). 

Variance 

We know that 
2

(2) [ ( 1)] ( ) ( )E X X E X E X = − = −  and 2 2 2( )E X = − . Hence, 

 
2 2

(2)   = + −  (3.15) 

By using equations (3.11), (3.12) and (3.13), we have 

 
( ) ( )

( )

( )

2

2

2 3 2

''' 2 ' ' ' '' '

1 '1 ' 1 ' 1 '

ff f g f g f

gg g g


+
= + + −

−− − −
 

 
( ) ( )

( ) ( )

2

2 3

'' 2 ' ' ' ' ' ' ' ''

1 ' 1 '

f f g f f g f f g

g g

+ + − −
= +

− −
 

 
( )

( ) ( )

2

2 3

'' ' ' ' ' ' ''

1 ' 1 '

f f g f f f g

g g

+ + −
= +

− −
 

By using (3.12) and (3.13), we have 

 
( )

( ) ( )

2

2

2 3

1 2 2

1 2 1 2

m m mq m m mq

q q


− + + −
= +

− −
 

( ) ( )

2 2

2 3

2 2

1 2 1 2

m m mq m m mq

q q

− + + −
= +

− −
 

( ) ( )
2 3

2 2

1 2 1 2

mq mq

q q
= +

− −
 

( )

( )
3

2 1 2 2

1 2

mq q mq

q

− +
=

−
 

( )

2

3

4 4

1 2

mq mq

q

−
=

−
 

( )

( )
3

4 1

1 2

mq q

q

−
=

−
, 1 / 2q  . Hence, 

 
( )( )

32 4 1 1 2mq q q
−

= − −  (3.16) 
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3.4 Dispersion Property for Random Walk Distribution 

In explaining the dispersion properties inherent to the random walk distribution, a comprehensive 

analysis requires the investigation of the variance-to-mean ratio. This critical examination not only 

quantifies the variability within the distribution but also contributes valuable insights into the 

stochastic dynamics governing the random walk process. By delving into the interplay between 

variance and mean, the aim is to unveil nuanced aspects of dispersion that hold significance in 

various applications, enhancing the understanding of the underlying statistical behavior and 

implications of the random walk distribution. That is, 2 /  =
3

4 (1 )

(1 2 ) 1 2

mq q m

q q

   −
   

− −   
. If 

2 / 1   , the distribution is said to be over-dispersed, if 2 / 1    

It is said to be under-dispersed and it is equi-dispersed when 2 / 1  = . However, it is necessary 

to solve for the value of the parameter q. To achieve this, 2  , is considered, based on the 

values of the mean and variance in equations (3.14) and (3.16), respectively. 

2   when
( )

( )
3

4 1

1 21 2

mq q m

qq

−


−−
 

  

( )

( )
2

4 1
1

1 2

q q

q

−


−
 

  
2 24 4 1 4 4q q q q−  − +  

  
28 8 1 0q q− +   

Solving the quadratic function, the value of q will be, 

2 4 8 64 32

2 16

b b ac
q

a

−  −  −
= =

 

1/ 2 2 / 4q =   

Since q < 1/2, then the required value of q will be 1/ 2 2 / 4− . It is also necessary to determine 

the region of parameter q that makes the distribution either over-, under-, or equi-dispersed. The 

following regions for the parameter q: 0 1/ 2 2 / 4q  −  and 1/ 2 2 / 4 1/ 2q−   , will be 

considered, and the region where the quantity 28 8 1q q− +  is negative will be identified. 

Since q < 1/2, the following conditions apply: 

The distribution is over-dispersed when 1/ 2 2 / 4 1/ 2q−   . 

The distribution is under-dispersed when 0 1/ 2 2 / 4q  − . 
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The distribution is equi-dispersed when 1/ 2 2 / 4q = − . 

 

4. DISCUSSION 

4.0  Modified Random Walk Distribution: The Modified Random Walk (MRW) 

distribution is an extension derived from the foundational Random Walk distribution, as outlined 

in (3.4). The latter is expressed as: 

( )
( )

( )
( )/2

/ 2

x mm
xm

P X x p pq
x mx

− 
= =  

−  , , 2, 4,...x m m m= + +  

We modify (3.4) by setting 

 
( ) / 2y x m= −

, (4.0) 

such that 2x y m= + . Then, the MRW distribution becomes 

( ) ( )
2

2

ym
m ym

P Y y p pq
ym y

+ 
= =  

+    

2
,

2

m y y
m ym

p q
ym y

+
+ 

=  
+  

 0,1, 2,...y =       (4.1) 

Therefore, equation (4.1) is referred to as the modified random walk distribution. 

4.1 Recursive formula for Computing the Probability of MRW Distribution 

A recursive formula is employed to compute the probabilities associated with the Modified 

Random Walk (MRW) distribution. Initially, the probability at y = 0 is computed, serving as the 

initial term to define the subsequent terms in the sequence. Utilizing the probability mass function 

(PMF) of the modified random walk, as presented in (3.21), and setting y = 0, the following is 

obtain: 

( ) ( )
0

2
1

2

m y y

y

m ym
P Y y q q

ym y

+

=

+ 
= = − 

+  
. 

The probability is given by 

( ) 0 0

0

0
0 (1 ) (1 )

00

m m
mm

P Y P q q q
m

+
+ 

= = = − = − 
+  

 

The recursive relationship is defined by the following: 
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For 1y = , 
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( ) ( )( )

( )
0

1

1 2 1 2 2
P

1

q q m m P

m

− + − + −
=

+
( )0 1mP q q= −  

Recall that ( )0 1
m

P q= − , then ( ) ( )1 1 1
m

P m q q q= − − . 

To extend this computation to other values of y, a consistent methodology will be applied. In the 

course of this research work, the probabilities will be iteratively computed, leveraging the 

capabilities of the R statistical package for efficient and rigorous analysis. 

Graphical Representation of the Modified Random Walk (MRW) Distribution 

The MRW distribution is visually explored through Figures 1 to 4, where various aspects of its 

behaviour are elucidated. In order to investigate the impact of the dispersion parameter on 

probabilities, the parameter is systematically varied, and its influence on the distribution is 

observed.  

A noteworthy characteristic observed in these graphs is the directional skewness, notably skewed 

to the right. Furthermore, the distribution is unimodal, exhibiting a single peak. In Figure 1, the 

peak is situated around zero and appears to shift to the right as the parameter m increases. 

Concurrently, the spread around the peak expands with an increase in m. Figure 4, characterized 

by the highest m value among the figures, and depicts a noteworthy phenomenon— the peak 

gravitates toward the center (mean) as the parameter escalates. 

These visualizations not only provide a comprehensive understanding of the modified random 

walk distribution but also offer valuable insights into the distribution's behavior under varying 

dispersion parameters. 
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4.2 Mean and Variance of Modified Random Walk Distribution 

The mean and variance of the MRW distribution will be obtained from that of the random walk 

distribution in equations (3.14) and (3.16). This is done by taking the expectation of (4.0). In 

doing so, the following is obtained: 

( ) [ ( ) ] / 2 / (1 2 ),  1/ 2E Y E X m mq q q= = − = −  , (4.2) 

by using equation (4.0). Therefore the mean for the MRW distribution is given by (4.2). 

Variance 

From Equation (4.0), we have 

 2 3( ) ( ) / 4 (1 ) / (1 2 ) ,  1/ 2V Y V X mq q q q= = = − −  . (4.3) 
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Also, the variance for the MRW distribution is given by (4.3). 

4.3 Dispersion Property for MRW Distribution 

To study the dispersion property of the MRW distribution, it is necessary to examine the 

relationship between the mean and the variance—whether they are equal or one is greater than 

the other. This is done by considering: 

2   or 
( )

( )
3

1

1 2

mq q

q

−

− 1 2

mq

q


−
 (4.4)

 

On simplification, (4.4) gives 

21 1 4 4q q q−  − +   24 3 0q q− +    ( )4 3 0q q− +   or ( )3 / 4 0q q −  . 

Since 0 < q < 0.5, the inequality ( )3 / 4 0q q −   is always satisfied. Hence, the MRW 

distribution is always over-dispersed. 

 

5. CONCLUSION 

This study focused on the Modified Random Walk (MRW) distribution, a discrete probability 

distribution derived from the random walk distribution. The primary objective was to enhance the 

understanding of the random walk distribution through modification and an in-depth exploration 

of its properties. The MRW distribution, characterized by the parameters m and q, was subject to 

comprehensive analysis, including the derivation of key properties such as the mean and variance, 

with particular emphasis on studying its dispersion characteristics. 

A recursive formula for generating distribution probabilities was developed, and iterative 

computations of probabilities were performed using the R statistical package. Additionally, 

graphical representations for various dispersion parameters were presented. The findings indicate 

that the dispersion property of the MRW distribution consistently demonstrates over-dispersion, 

where the variance consistently exceeds the mean. 

The computed probabilities, as illustrated in the accompanying graphs, lead to the conclusion that 

the MRW distribution is unimodal and consistently exhibits right skewness. These findings 

provide valuable insights into the behaviour and characteristics of the distribution, highlighting its 

statistical properties and potential applications. 
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