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COEFFICIENT INEQUALITIES OF BAZILEVIC FUNCTIONS
COLLIGATED WITH CONIC DOMAIN

OLALEKAN FAGBEMIRO

Abstract. In this paper, the concept of Bazilevic function as well as Janowski
function and the conic regions are combined effectively to define a new domain
that exemplify the conic-type regions. The sub-classes of these types of func-
tions which map the open unit disk U onto this changed Conic domain are
defined. Also, the sub-classes of k -uniformly Janowski convex and k- uni-
formly Janowski starlike function involving Bazilevic functions are defined us-
ing Sălăgean derivative operator. New results were obtained along with some
corollaries and the consequences of our results were pointed out.

1. Introduction

Let A be the usual class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. The class
S∗(α), C(α) are the well-known classes of starlike and convex univalent functions
of order α (0 ≤ α < 1) respectively, for details, see [2] and [19].
A function h(z) is said to be in the class P [A,B] if it is analytic in U with
h(0) = 1 and h(z) ≺ 1+Az

1+Bz
, −1 ≤ B < A ≤ 1, where ≺ stands for subordination.

Geometrically, a function h(z) ∈ P [A,B] maps the open unit disk U onto the
disk defined by the domain

Ω[A,B] =

{
ω :

∣∣∣∣∣ω − 1− AB
1−B2

∣∣∣∣∣ < A−B
1−B2

}
.
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The class [A,B] is connected with the class P of functions with positive real parts
by the relation

h(z) ∈ P ⇐⇒ (A+ 1)h(z)− (A− 1)

(B + 1)h(z)− (B − 1)
∈ P [A,B].

This class was introduced by Janowski [10] and then studied by several authors,
for example see [15], [18] and [27] among others.

Kanas and Wisniowska [13] and [12] introduced and studied the class k−UCV
of k− uniformly convex functions and the corresponding class k − ST of k−
starlike functions. These classes were defined based on the conic domain Ωk,
k ≥ 0 which was defined by Kanas and Wisniowska [12] and [12] as

Ωk = u+ iv : u > k
√

(u− 1)2 + v2.

For further details see [17].
The function which play the role of extremal functions for these regions are

given as

pk(z) =



1+z
1−z , if k = 0

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, if k = 1,

1 + 2
1−k2 sinh2

[(
2
π

arccos k
)
arc tanh

√
z
]
, if 0 < k < 1,

1 + 1
k2−1 sin

(
π

2R(t)

∫ u(z)√
t

0
1√

1−x2
√

1−(tx)2
dx
)

+ 1
k2−1 , if k > 1,

where u(z) = z−
√
t

1−
√
tz

, t ∈ (0, 1), z ∈ U and z is chosen so that k = cosh
(πR′(t)

4R(t)

)
,

R(t) is Legendre’s complete elliptic integral of the first kind and R′(t) is comple-
mentary integral of R(t); for more details, see [13] and [12]. If pk(z) = 1+δkz+...,
then it was shown in [11] that from (1.2), one can have

δk =


8(arccosk)2

π2(1−k2) 0 ≤ k < 1,
8
π2 k = 1,

π2

4(k2−1)
√
t(1+t)R2(t)

k > 1,

(1.2)

These conic regions are being studied by several authors, see [1, 14, 16, 9, 8].
The classes K − UCV and k − ST are defined as follows.
A function f(z) ∈ A is said to be in the class k − UCV, if and only if,

(zf ′(z))′

f ′(z)
≺ pk(z) z ∈ U, k ≥ 0.

A function f(z) ∈ A is said to be in the class K − ST, if and only if,

zf ′(z)

f(z)
≺ pk(z) z ∈ U, k ≥ 0.
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These classes were then generalized to KD(k, α) and SD(k, α) respectively by
Shams et al. [26] based on the conic domain G(k, α), k ≥ 0, 0 ≤ α < 1, which is

G(k, α) = {ω : Re ω > k|ω − 1|+ α}.

Noor and Malik [17] investigated the concept of Janowski functions and the
conic domain, by using the following definitions.

Definition 1.1 [17]: A function p(z) is said to be in the class K − P [A,B],
if and only if ,

p(z) ≺ (A+ 1)pk(z)− (A− 1)

(B + 1)pk(z)− (B − 1)
, k ≥ 0 (1.3)

where pk(z) is defined by (1.2) and −1 ≤ B < A ≤ 1. Geometrically, the function
p(z) ∈ K−P [A,B] takes all values from the domain Ωk[A,B], −1 ≤ B < A ≤ 1,
k ≥ 0 which is defined as

Ωk[A,B] =
{
ω : Re

((B − 1)ω(z)− (A− 1)

(B + 1)ω(z)− (A+ 1)

)
> k
∣∣∣(B − 1)ω(z)− (A− 1)

(B + 1)ω(z)− (A+ 1)
− 1
∣∣∣}(1.4)

Or equivalently,

Ωk[A,B] = {u+ iv : [(B2 − 1)(u2 + v2)− 2(AB − 1)u+ (A2 − 1)]2

> k2[(−2(B+!)(u2+v2)+2(A+B+2)u−2(A+1))2+4(A−B)2v2]}.

See [13] and [17] for more details.

Remark 1.2. (1) K − P [A,B] ⊂ p
(

2k+1−A
2k+1−B

)
, the well-known class of func-

tions with real part greater than 2k+1−A
2k+1−B .

(2) K − P [1. − 1] = P (pk), the well-known class introduced by Kanas and Wis-
niowska [12].
(3) 0− PA,B = p[A,B], the well-known class introduced by Janowski [10].

Definition 1.3[17]: A function f(z) ∈ A is said to be in the class K−UCV [A,B],
k ≥ 0,−1 ≤ B < A ≤ 1, if and only if,

Re

(
(B − 1) (zf

′(z))′

f ′(z)
− (A− 1)

(B + 1) (zf
′(z))′

f ′(z)
− (A+ 1)

)
> k

∣∣∣∣∣(B − 1) (zf
′(z))′

f ′(z)
− (A− 1)

(B + 1) (zf
′(z))′

f ′(z)
− (A+ 1)

− 1

∣∣∣∣∣
Or equivalently,

(zf ′(z))′

f ′(z)
∈ K − P [A,B] (1.5)
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Definition 1.4[17]: A function f(z) ∈ A is said to be in the class k − ST [A,B],
k ≥ 0,−1 ≤ B < A ≤ 1, if and only if,

Re

(
(B − 1) zf

′(z)
f(z)
− (A− 1)

(B + 1) zf
′(z)

f(z)
− (A+ 1)

)
> k

∣∣∣∣∣(B − 1) zf
′(z)

f(z)
− (A− 1)

(B + 1) zf
′(z)

f(z)
− (A+ 1)

− 1

∣∣∣∣∣
Or equivalently,

zf ′(z)

f(z)
∈ K − P [A,B]. (1.6)

It can be easily seen that

p(z) ∈ k − UCV [A,B ←→ zf ′(z) ∈ k − ST [A,B]]. (1.7)

Special cases.
(i) K−ST [1,−1] = K−ST,K−UCV [1,−1] = K−UCV, the well-known classes
of K− uniformly convex and K− starlike functions respectively, introduced by
Kanas and Wisniowska [13] and [12] .
(ii) K − ST [1 − 2α,−1] = SD(k, α), K − UCV [1 − 2α,−1] = KD(k, α), the
classes, introduced by Shams et al. in [26].
(iii) 0 − ST [A,B] = S∗[A,B], 0 − UCV [A,B] = C[A,B], the well-known classes
of Janowski starlike and Janowski convex functions respectively, introduced by
Janowski [10].

Lemma 1.5[24]: Let h(z) = 1 +
∑∞

n=1 cnz
n be subordinate to H(z) = 1 +∑∞

n=1Cnz
n. If H(z) is univalent in U and H(U) is convex, then |cn| ≤ |C1|, n ≥ 1.

Sălăgean [21] introduced the following differential operator:

D0
ωf(z) = f(z)

D1f(z) = D(D0f(z)) = zf ′(z)
...

Dmf(z) = D(Dm−1f(z)) = z(Dm−1f(z))′ (1.8)

The differential operator Dm is the one defined by Sălăgean.
observe that we can express equation (1.1) in the form

f(z)τ =
(
z +

∞∑
k=2

akz
k
)τ

(1.9)

Applying Binomial expansion and indices we have

f(z)τ = zτ +
∞∑
n=2

ak(τ)zτ+n−1 (1.10)

where τ ≥ 1.
Oladipo and Breaz [20] investigated and study Bazilevic functions whose general
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equation takes the form

f(z) =

{
α

1 + ε2

∫ z

0

p(v)− iε

v
1+ iαε

(1+ε2)

g(v)
α

1+ε2 dv

} 1+iε
α

(1.11)

If ε = 0 equation (1.12) becomes

f(z) =

{
α

∫ z

0

p(v)

v
g(v)αdv

} 1
α

(1.12)

Differentiating (1.13) we have

zf ′(z)f(z)α−1

g(z)α
= p(z) z ∈ U (1.13)

Or equivalently,

<

{
zf ′(z)f(z)α−1

g(z)α

}
(1.14)

The subclass of functions satisfying (1.14) are called Bazilevic functions of type
α and are denoted by B(α). For further details, see [3, 4, 7, 5, 8, 20, 21].
Let Aτ be the subclass of A consisting of analytic and τ− valent functions of the
form

Dmf(z)τ = τmzτ +
∞∑
n=2

(τ + n− 1)an(τ)zτ+n−1 (1.15)

where m ∈ N0, τ ≥ 1 and Dm is the Sălăgean derivative operator.

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

≺ pk(z), z ∈ U, k ≥ 0 (1.16)

where m ∈ N|0 and Dm is the Sălăgean derivative operator.

Definition 1.6: A function Dmf(z)τ ∈ Am,τ is said to be in the class K −STmτ ,
if and only if,

Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

≺ pk(z), z ∈ U, k ≥ 0 (1.17)

where m ∈ N0 and Dm is the Sălăgean derivative operator.

Definition 1.7: A function Dmf(z)τ ∈ Am,τ is said to be in the class K −
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UCV m
τ [A,B], k ≥ 0,−1 ≤ B < A ≤ 1 if and only if,

Re

{
(B − 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A+ 1)

}
> k

∣∣∣∣∣(B − 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A+ 1)

− 1

∣∣∣∣∣
Or equivalently, (

Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

∈ K − Pm
τ [A,B] (1.18)

where τ ≥ 1,m ∈ N0 and Dm is the Sălăgean derivative operator.

Definition 1.8: A function Dmf(z)τ ∈ Am,τ is said to be in the class k −
STmτ [A,B], k ≥ 0,−1 ≤ B < A ≤ 1 if and only if,

Re

{
(B − 1)

Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A+ 1)

}
> k

∣∣∣∣∣ (B − 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A+ 1)

− 1

∣∣∣∣∣
Or equivalently,

Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

∈ K − Pm
τ [A,B] (1.19)

where τ ≥ 1,m ∈ N0 and Dm is the Sălăgean derivative operator.
It can easily be seen that

2. Main Results

Theorem 2.1: A function f(z)τ ∈ Am,τ is of the form (11) is in the class
K − STmτ [A,B] if it satisfies the condition

∞∑
n=2

{
2(k + 1)

(τ + n− 1

τ

)m(n− 1

τ

)
+

∣∣∣∣∣(B + 1)

(
τ + n− 1

τ

)m+1

− (A+ 1)

(
τ + n− 1

τ

)m∣∣∣∣∣
}
(2.1)

|an(τ)| < |B − A|

where −1 ≤ B < A ≤ 1, k ≥ 0,m ∈ N0, τ ≥ 1 and Dm is the Sălăgean derivative
operator.
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Proof: Assuming that (2-1) holds, then it suffices to show that

k

∣∣∣∣∣ (B − 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A+ 1)

− 1

∣∣∣∣∣−<
{

(B − 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A+ 1)

}
< 1(2.2)

By considering the L.H.S. of (2.2) we have

k

∣∣∣∣∣ (B − 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)

(
Dm+1f(z)τ

τm+1zτ

)′
Dmf(z)τ

τmzτ

− (A+ 1)

− 1

∣∣∣∣∣−<
{

(B − 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A− 1)

(B + 1)
Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

− (A+ 1)

}
< 1

We have

≤ (k + 1)

∣∣∣∣∣ (B − 1)D
m+!f(z)τ

τm+1zτ
− (A− 1)D

mf(z)τ

τmzτ

(B + 1)D
m+1f(z)τ

τm+1zτ
− (A+ 1)D

mf(z)τ

τmzτ

− 1

∣∣∣∣∣
= (k + 1)

∣∣∣∣∣(B − 1)D
m+1f(z)τ

τm+1zτ
− (A− 1)D

mf(z)τ

τmzτ
− (B + 1)D

m+1f(z)τ

τm+1zτ
+ (A+ 1)D

mf(z)τ

τmzτ

(B + 1)D
m+1f(z)τ

τm+1zτ
− (A+ 1)D

mf(z)τ

τmzτ

− 1

∣∣∣∣∣
= 2(k + 1)

∣∣∣∣∣ Dmf(z)τ

τmzτ
− Dm+1f(z)τ

τm+1zτ

(B + 1)D
m+1f(z)τ

τm+1zτ
− (A+ 1)D

mf(z)τ

τmzτ

− 1

∣∣∣∣∣,
≤

2(k + 1)
∑∞

n=2

(
τ+n−1

τ

)m[
τ+n−1

τ

]
|an(τ)|

|B − A| −
∑∞

n=2

∣∣∣∣∣(B + 1)
(
τ+n−1

τ

)m+1

− (A+!)
(
τ+n−1

τ

)m∣∣∣∣∣|an(τ)|

The last expression (2.3) is bounded above by 1 if

∞∑
n=2

{
2(k + 1)

(τ + n− 1

τ

)m(n− 1

τ

)
+

∣∣∣∣∣(B + 1)

(
τ + n− 1

τ

)m+1

− (A+ 1)

(
τ + n− 1

τ

)m∣∣∣∣∣
}

|an(τ)| < |B − A|
and this complete the proof.
By specializing some parameters, we have the following interesting results:
when m = 0 and τ = 1, then we have the following known result, proved by Noor
and Malik [17].

Corollary 2.2: A function f ∈ A and of the form (1.1) is in the class K −
ST [A,B], if it satisfies the condition

∞∑
n=2

{
2(k + 1)(n− 1) + |n(B + 1)− (A+ 1)|

}
|an| < |B − A| (2.3)
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when A = 1, B = −1, m ∈ N0 and τ ≥ 1, then we have the following new result

Corollary 2.3: A function f τ ∈ Am,τ and of the form (1.11) is in the class
K − STm,τ if it satisfies condition:

∞∑
n=2

{(τ + n− 1

τ

)m((k + 1)(n− 1) + τ

τ

)}
|an(τ)| < 1 k ≥ 0 (2.4)

when A = 1, B = −1, m = 0 and τ = 1, then we have the following result, proved
by Kanas and Wisniowska [12].

Corollary 2.4: A function f ∈ A and of the form (1.1) is in the class K −
ST [A,B], if it satisfies the condition

∞∑
n=2

{
n+ k(n− 1)}|an| < 1, k ≥ 0 (2.5)

when A = 1 − 2α, B = −1, with 0 ≤ α < 1 m ∈ N0 and τ ≥ 1. Then we have
the following new result,

Corollary 2.5: A function f τ ∈ Am,τ and of the form (1.11) is in the class
SDm,τ if it satisfies condition:
∞∑
n=2

{(τ + n− 1

τ

)m((k + 1)(n− 1) + τ(1− α)

τ

)}
|an(τ)| < 1− α k ≥ 0 (2.6)

where 0 ≤ α < 1.
when A = 1− 2α, B = −1, with 0 ≤ α < 1 m = 0 and τ = 1, then we have the
following result, proved by Shams et al [26].

Corollary 2.6: A function f ∈ A and of the form (1.1) is in the class SD(k, α),
if it satisfies the condition

∞∑
n=2

{
n(k + 1)− (k + α)}|an| < 1− α (2.7)

where 0 ≤ α < 1 and k ≥ 0
when A = 1− 2α, B = −1, with 0 ≤ α < 1, k = 0 m ∈ N0 and τ ≥ 1, and then
we have the following new result

Corollary 2.7: A function f τ ∈ Am,τ and of the form (1.11) is in the class
S∗,m,τ (α) if it satisfies condition:

∞∑
n=2

{(τ + n− 1

τ

)m(n− 1 + τ(1− α)

τ

)}
|an(τ)| < 1 0 < −α < 1 (2.8)

when A = 1 − 2α, B = −1, with 0 ≤ α < 1, k = 0 m = 0 and τ = 1, then we
have the following result, proved by Selverman in [25].
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Corollary 2.8: A function f ∈ A and of the form (1.1) is in the class S∗(α), if
it satisfies the condition

∞∑
n=2

{
(n− α)}|an| < 1− α, 0 ≤ α < 1. (2.9)

Theorem 2.9: A function f(z)τ ∈ Am,τ is of the form (1.11) is in the class
K − CV m

τ [A,B] if it satisfies the condition

∞∑
n=2

(
τ + n− 1

τ

)m+1{
2(k + 1)

(τ + n− 1

τ

)m(n− 1

τ

)
+

∣∣∣∣∣(B + 1)

(
τ + n− 1

τ

)m+1

− (A+ 1)

(
τ + n− 1

τ

)m∣∣∣∣∣
}
|an(τ)| < |B − A| (2.10)

where −1 ≤ B < A ≤ 1, k ≥ 0,m ∈ N0, τ ≥ 1 and Dm is the Sălăgean derivative
operator.

The proof follows immediately by using Theorem 2.1 and (1.21).

Theorem 2.10: A function f(z)τ ∈ K − STmτ [A,B] and is of the form (1.11),
then, for n ≥ 2,

|an| ≤
n−2∏
j=0

|δk(A−B)− 2jB|
2

( τ

τ + j − 1

)m( τ

j + 1

)
(2.11)

where δk is defined by (1.3),m ∈ N0, τ ≥ 1 and Dm is the Sălăgean derivative
operator.
Proof: By definition (1.11), for f(z)τ ∈ K − STmτ [A,B], we have

Dm+1f(z)τ

τm+1zτ

Dmf(z)τ

τmzτ

= p(z) (2.12)
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where

p(z) ≺ (A+ 1)pk(z)− (A− 1)

(B + 1)pk(z)− (B − 1)

= ((A+ 1)pk(z)− (A− 1))((B + 1)pk(z)− (B − 1))−1

=

((A− 1

B − 1

)
−
(A− 1

B − 1

)(A+ 1

A− 1

)
pk(z)

)(
1 +

∞∑
n=1

(B + 1

B − 1
pk(z)

))

=

((A− 1

B − 1

)
−
(A− 1

B − 1

)(A+ 1

A− 1

)
pk(z)

)(
1 +

B + 1

B − 1
pk(z) +

(B + 1

B − 1

)2
(pk(z))2 + . . .

)
Clearly, we have

p(z) =
A− 1

B − 1
− A+ 1

B − 1
pk(z)

+
(B + 1)(A− 1)

(B − 1)2
pk(z)

− (B + 1)(A+ 1)

(B − 1)2
(pk(z))2

+
(B + 1)2(A− 1)

(B − 1)3
(pk(z))2

− (B + 1)2(A+ 1)

(B − 1)3
(pk(z))3

+
(B + 1)3(A− 1)

(B − 1)4
(pk(z))3

− (B + 1)3(A+ 1)

(B − 1)4
(pk(z))4 + . . .

Notice if pk(z) = 1 + δkz + . . . , then the following desirable computation readily
comes handy:

p(z) ≺
∞∑
n=1

−2(A−B)n−1

(B − 1)n
+
{∑ 2n(A−B)(B + 1)n−1

(B − 1)n+1

}
δkz . . .

Now we observe that the series
∑−2(B+1)n−1

(B−1)n and
∑∞

n=1
2n(A−B)(B+1)n−1

(B−1)n+1 are con-

vergent to 1 and A−B
2

respectively.
Consequently,

p(z) ≺ 1 +
1

2
(A−B)δkz + . . .
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Now if p(z) = 1 +
∑∞

n=1 cnz
n, then by Lemma 1.5 [24] , we have

|cn| ≤
1

2
(A−B)δk, n ≥ 1. (2.13)

Right away (34), we have

Dm+1f(z)τ

τzτ
=
Dmf(z)τ

τzτ

This implies that

z +
∞∑
n=2

(τ + n− 1

τ

)m+1

an(τ)zn =
(
z +

∞∑
n=2

(τ + n− 1

τ

)m
an(τ)zn

)(
1 +

∞∑
n=1

Cnz
n
)

z +
∞∑
n=2

(τ + n− 1

τ

)m+1

an(τ)zn = z +
∞∑
n=2

(τ + n− 1

τ

)m
an(τ)zn +

∞∑
n=1

cnz
n+1+

∞∑
n=1

∞∑
n=2

(τ + n− 1

τ

)m
Cnan(τ)z2n

Equating coefficients of zn on both sides, we have(τ + n− 1

τ

)m+1

an(τ)−
(τ + n− 1

τ

)m
an(τ) =

∞∑
j=1

an−j(τ)cj,

(τ + n− 1

τ

)m(τ + n− 1

τ
− 1
)
an(τ) =

n−1∑
j=1

an−j(τ)cj, a1 = 1,

(τ + n− 1

τ

)m(n− 1

τ

)
an(τ) =

n−1∑
j=1

an−j(τ)cj, a1 = 1,

This equally implies that

|an(τ)| ≤
( τ

τ + n− 1

)m( τ

n− 1

) n−1∑
j=1

|an−j||cj|, a1 = 1.

Using (2.14), we have

|an(τ)| ≤ |δ|(A−B)

2

( τ

τ + n− 1

)m( τ

n− 1

) n−1∑
j=1

|aj|, a1 = 1. (2.14)
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Now we prove that

|δ|(A−B)

2

( τ

τ + n− 1

)m( τ

n− 1

) n−1∑
j=1

|aj| ≤
n−2∏
j=0

|δk(A−B) + 2jB|
2

( τ

τ + n− 1

)m( τ

n− 1

)
(2.15)

For this, we use the famous mathematical induction method.
For n = 2, from (2.15), we have

|a2(τ)| ≤ |δk(A−B)

2

( 1

τ + 1

)m
τm+1

From (2.12), we have

|a2(τ)| ≤ |δk|(A−B)

2

( 1

τ + 1

)m
τm+1

For n = 3, from (2.15), we have

|a3(τ)| ≤ |δk|(A−B)

4

( 1

τ + 2

)m
(τm+1)(1 + |a2|)

≤ |δk|(A−B)

4

( 1

τ + 2

)m
(τm+1)

(
1 +
|δk|(A−B)

2

( 1

τ + 1

)m
(zn+1)

)
From (2.12), we have

|a3(τ)| ≤ |δk|(A−B)

2

( 1

τ + 1

)m
(τm+1)

|δk|(A−B)

4

( 1

τ + 2

)m
(τm+1)

≤ |δk|(A−B)

2

( 1

τ + 1

)m
(τm+1)

|δk(A−B) + 2jB|
4

( 1

τ + 2

)m
(τm+1)

≤ |δk|(A−B)

2

( 1

τ + 1

)m
(τm+1)

( |δk|(A−B)

2

( 1

τ + 2

)m
(τm+1) + 1

)
Let the hypothesis be true n = t .
From (2.15), we have

at(τ) ≤ |δk|(A−B)

2

( τ

τ + t− 1

)m( τ

t− 1

) t−1∑
j=1

|aj|.
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From (2.12), we have

|at(τ)| ≤
t−2∏
j=0

|δk(A−B) + 2jB|
2

( τ

τ + j − 1

)m( τ

j − 1

)
,

≤
t−2∏
j=0

|δk|(A−B) + 2jB

2(j + 1)

By the induction hypothesis, we have

|δk|(A−B)

2

( τ

τ + t− 1

)m( τ

t− 1

) t−1∑
j=1

|aj| ≤
t−2∏
j=0

|δk|(A−B) + 2j

2

( τ

τ + j = 1

)m( τ

j + 1

)
Multiply both sides by |δk|(A−B)+2(t−1)

2

(
τ
τ+1

)m(
τ
t

)
We have

t−2∏
j=0

|δk|(A−B) + 2j

2

( τ

τ + j − 1

)m( τ

j + 1

)
≥

|δk|(A−B)

2

( τ

τ + j − 1

)m( τ

t− 1

) |δk|(A−B) + 2(t− 1)

2

( τ

t− 1

)m(τ
t

) t−1∑
j=1

|aj|

=
|δk|(A−B)

2

(τ
t

)( τ

τ + t− 1

)m{ |δk|(A−B)

2

( τ

τ + t− 1

)m( τ

t− 1

) t−1∑
j=1

|aj|+
t−1∑
j=1

|aj|
}

≥ |δk|(A−B)

2

( τ

τ + t− 1

)m(τ
t

){
|aj|+

t−1∑
j=1

|aj|
}

=
|δk|(A−B)

2

( τ

τ + t− 1

)m(τ
t

) t∑
j=1

|aj|

That is,

|δk|(A−B)

2

( τ

τ + t− 1

)m(τ
t

) t∑
j=1

|aj| ≤
t−2∏
j=0

|δk|(A−B) + 2j

2

( τ

τ + j − 1

)m( τ

j + 1

)
and this shows that inequality (2.16) is true for n = t+1. This complete the proof.



48 O. FAGBEMIRO

Corollary 2.11:when m = 0 and τ = 1 then Theorem 2.10 reduces to

|an| ≤
n−2∏
j=0

|δk(A−B)− 2jB|
2(j + 1)

n ≥ 2 (2.16)

. This result was obtained in [17].

Corollary 2.12:when A = 1, B = −1,m ∈ N0 and τ ≥ 1 then (2.1) reduces
to

|an| ≤
n−2∏
j=0

|δk + j|
( τ

τ + j − 1

)m( τ

j + 1

)
n ≥ 2 (2.17)

. A new result which involves the coefficient inequality of the class k − STm,τ

Corollary 2.13:when A = 1, B = −1,m = 0 and τ = 1 then (2.1) reduces
to

|an| ≤
n−2∏
j=0

|δk + j|
j + 1

n ≥ 2 (2.18)

.
This is the coefficient inequality of the class K − ST, introduced by Kanas and
Wisniowska [12]

Corollary 2.14:when A = 1, B = −1,m = 0 and τ = 1 with 0 ≤ α < 1,
then (2.1) reduces to

|an| ≤
n−2∏
j=0

|δk(1− α) + j|
j + 1

n ≥ 2 (2.19)

.
This is the coefficient inequality of the class SD(k, α), introduced by Shams et
al [26].
When k = 0, then δk = 2, m = 0 and τ = 1 and we obtain the following known
result, prove in [10].

Corollary 2.15:Let f(z) ∈ S∗[A,B] and is of the form (1.1) then for n ≥ 2

|an| ≤
n−2∏
j=0

|(A−B)− jB|
j + 1

− 1 ≤ B < A ≤ 1. (2.20)

.

Conclusion: This study considered two subclasses of Bazilevic functions that
were colligated with the conic domain. These classes were introduced in the defi-
nitions 1.7 and 1.8 by using the well-established Sălăgean derivative operator that
was seen in equation (1.3) and it was used to remodify the Bazilevic function of
type τ -valent function was seen in equation (1.16). This was then used in sub-
ordination relation to the function with positive real part that were introduced



LAGJMA-2024/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 49

in the definitions 1.1 - 1.4 which represented some known subclasses of analytic-
univalent that motivated the interest and focus of this work.
The leading results are contained in two theorems. The first theorem involved the
coefficient inequalities for the class K − STmτ [A,B] along with some corollaries
that were pointed out by specializing some parameters to obtain some new and
existing results in this perspective.
The second theorem equally involved the coefficient inequalities for the class
K −UCV m

τ [A,B] along with some corollaries that were pointed out by specializ-
ing some parameters to obtain some new and existing results in this perspective
as well.
Thus, the exciting imports of each theorem followed when employing the proved
of each result. The new results presented in this paper are exciting for research
benefits. In particular, the coefficient inequalities obtained in this work could be
extended in order to invesigate some peculiar behaviours of some other subclasses
of analytic-univalent functions.
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