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NUMERICAL APPROXIMATION OF SINGULAR
MULTI-ORDER FRACTIONAL VOLTERRA

INTEGRO-DIFFERENTIAL EQUATIONS BY LEAST SQUARES
AND AKBARI-GANJI’S METHODS

O. A. UWAHEREN∗, O. ODETUNDE, E. O. ANYANWU, F. Y. ADERIBIGBE,
AND C. L. PIUS

Abstract. This article is concerned with the numerical solution of singu-
lar multi-order fractional Volterra integro-differential equations. Two numer-
ical methods are proposed; Least Squares and Akbari-Ganji’s Methods using
Legendre polynomials as basis functions. The proposed methods were demon-
strated on some examples to verify their practicability and the results obtained
were very close to the exact solution.
Key words: Singular Multi-order Fractional; Volterra Integro-differential
Equations; Least Squares Method and Akbari-Ganji’s Method

1. Introduction

There has been an increased interest in fractional calculus by researchers due
to its applications in the fields of sciences and engineering. Fractional calculus
(non-integer derivatives or integrals) possess a memory effect which are useful in
several materials such as viscoelastic materials or polymers as well as principles
of applications such as anomalous diffusion that enhances the transformation of
physical problems. Weibeer (2005) These transformation are usually expressed
either as fractional differential equations (ordinary and partial differential) or
fractional integro-differential equations. However, most of these equations do
not have solutions analytically and so it becomes important to use numerical
methods as an alternative methed of solution. Hence, the need to provide good
approximate solution schemes.
Numerical schemes or methods are constructed and their effectiveness in terms
of accuracy and efficiency are verified by comparing the solutions of the methods
with the exact solutions if they exist or that of the existing scheme results in the
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literatures.
Here, we place side by side the results of Least Squares and that of Akbari-Ganji’s
Methods using Legendre polynomials as basis functions with the exact solutions of
some singular multi-order fractional Volterra integro-differential equations. The
general form of the class of singular multi-order fractional integro-differential
equation is given as:

Dαy(x) +
n∑
i=0

piy
(i)(x) + λ

∫ x

0

y(t)√
x− t

dt = f(x) (1.1)

subject to the condition

y(k)(0) = αk; k = 0, 1, 2, · · ·n− 1; (1.2)

Where Dαy(x) the αth Caputo derivatives of y(x), y(i)(x) is the ith derivative of
y(x), pi, i = 0, 1, 2, · · ·n are constants, x and t are given real variables in the
interval [0,1], y(x) is the unknown function to be determined and 1√

x−t is the

kernel, the singular part
Some Relevant Terms Used
In this section, we defined some of the relevant terminologies that would aid the
understanding of the work. They are:
Integro-Differential Equation: An integro-differential equation is a type of
differential equation that involves both derivatives and integrals operators and
the two operators are present in the same equation. It represents a mathematical
relationship between a function and its derivatives as well as its integral over
certain intervals. The general form of an integro-differential equation is given as:

y(n)(x) = f(x) + λ

∫ b

a

k(x, t)y(t)dt (1.3)

subject to conditions y(k)(0) = φk, a and b are the limits of integration and k(x, t)
is the kernel.
Fractional Order Differential Equations: Fractional order differentioal equa-
tions are generalized non-integer order differential equations. Equation (3) be-
comes a fractional differential equation if the differential n is replaced by a frac-
tional operator α and it is now written as

D(α)y(x) = f(x) + λ

∫ b

a

k(x, t)y(t)dt (1.4)

where D(α) denote derivative of y(x) and α is fractional number.
Integro-Differential Difference Equation: A differenntial equation is called
integro-differential difference equation if the kernel say k(x, t) under the integral
sign depends on the difference x− t so that equation (4) becomes

y(n)(x) = f(x) + λ

∫ b

a

(x− t)y(t)dt (1.5)

and the kernel is called difference kernel.
Fredholm Integro-differential equation: If the limit of integration are fixed
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then the Integro-differential equation is called Fredholm Integro-differential equa-
tion. This is of the form

y(n)(x) = f(x) + λ

∫ b

a

K(x; t)y(t)dt, y(n) =
dny

dxn
(1.6)

where a and b are lower and upper limits of integration which are constants
Volterra Integro-differential Equations: If one of the limit is a variable then
Integro-differential equation is called Volterra integral-differential equation. This
is of the form

y(n)(x) = f(x) + λ

∫ x

a

K(xt)y(t)dt, u(n) =
dny

dxn
(1.7)

where a is a constant and x is a variable.
Equation (7) is called Integro-differential Difference Equation if the kernel k(x, t)
is given as k(x− t) and the general form is

y(n)(x) = f(x) + λ

∫ x

0

(x− t)y(t)dt (1.8)

Caputo Fractional Derivative: Let m − 1 ≤ α ≤ m, and α ≤ 0. Caputo
fractional derivative denoted by Dα

xf(x) is defined as follows:

Dα
xf(x) =

{
1

Γ(m−α)

∫ x
0

(x− τ)m−α−1[Dmf(τ)]dτ ; m− 1 ≤ α ≤ m
dmf(x)
dxm

, α = m; mεN

The Caputo fractional derivative has the following properties:

JαJvf(x) = Jα+vf(x), α, v ≥ 0

Jαxβ =
Γ(β + 1)

Γ(β + α + 1)
xβ+α

Dαxβ =
Γ(β + 1)

Γ(β − α + 1)
xβ−α

JαDαf(x) = f(x)

Dα
xf(x) = Dα−n

x f(x) = jm−α[Dmf(x)]; m− 1 ≤ α ≤ m

Legendre Polynomials: Legendre polynomials belong to the class of classical
orthogonal polynomials. In the Rodrigues formula

Pn(x) =
(−1)n

2nn!

dn

dxn
(x2 − 1)n (1.9)

P0(x) = 1 and P1(x) = x and for n ≥ 1, the recurrence

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x); (1.10)

becomes useful. Therefore, using (9) and (10) together, we can generate a few
Legendre polynomial valid in [0, 1] as we replace every x obtained from equation
(10) by 2x− 1. So we have the following shifted legendre polynomial
P̄0(x) = 1
P̄1(x) = 2x− 1
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P̄2(x) = 6x2 − 6x+ 1
P̄3(x) = 20x3 − 30x2 + 12x− 1
.̄..

1.1. Literature Review. Recently, singular multi-order fractional differential
equations and singular multi-order fractional integro-differential equations have
attracted great attention from various researchers in the field of physics, visco-
elasticity, fluid mechanism, signal processing, electric circuit etc. These re-
searchers have tried to apply the concept fractional calculus to real life problems
solving and the likes. Some of these researchers includes Beleanu (2022) who
introduced a new technique of fractional model of COVID-19 pandemic includ-
ing the effects of isolation and quarantine to determine the reproduction number
of the pandemic. In the model, ordinary time-derivatives was developed and
then modified by applying the general structure of fractional operators. After
some numerical simulations, the results provided a better fit to the real data
which were compared to other classical and fractional models. Abu-arqab (2022)
provided a novel analytical algorithm for generalized fifth-order time-fractional
and non-linear evolution. The study designed an efficient algorithm for solv-
ing time-fractional Caudrey-Dodd-Gibbon, and Kaup-Kupershmidt equations in
the form of a convergent conformable time-fractional series and the results were
presented in two-and three-dimensional graphs, while dynamic behaviors of frac-
tional parameters were reported for several values. Kumar (2021) introduced a
new numerical method for the solution of the fractional SEIR epidemic of measles.
The study used wavelet-based numerical scheme for fractional order SEIR epi-
demic of measles by Genocchi polynomial. Simulations were done and the results
were compared to the existing ones. Djennadi (2021) considered an inverse back-
ward and source problems for time-space fractional diffusion equation by applying
the Tikhonov regularization technique. The error estimates between the exact
and its regularized solutions were obtained. The convergence of the regular-
ized solutions also obtained validate the results which were adjudged okay. Gu
(2021) studied a starting point in fractional equation in revealing the memory
of length by an inverse problem. The study, through existence analysis of the
inverse problem, obtained the range of the initial value points and the memory
length of fractional differential equations and the yielded results favorably agreed
with those in the literatures. Oyedepo (2022) used the least square method to
solve fractional order integro-differential equations. Alkhalissi (2021) proposed
an operational matrix method for fractional differential equations by using the
generalized Gegenballer-Hambert polynomials. There are many other researchers
that have employed numerical techniques to solve various fractional differential or
integro-differential equations. They include among others; Sadabad (2020) that
studied the eigenvalue and eigenvector of fractional Sturm-Liouville problems via
Laplace transform, Yang (2021) that used numerical approach to investigated
and analyzed intermediate value problems of fractional differential equations,
Uwaheren (2022) that find the Numerical solution of Volterra integro-differential
equations by modified Akbari-Ganij’s method, Hao (2017) who proposed nuem-
rical solution for a class of multi-order fractional differential equation with error
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correction and convergence analysis and Wei (2021) applied extrapolation tech-
nique to solve two-point fractional order boundary value problems (BVP). The
work presented a stable numerical method for solving fractional differential equa-
tion with end-point singularities by finite difference method. In this study, Least
Squares and Akbari-Ganji’s Methods solution of singular multi-order fractional
Volterra integro-differential equations using Legendre polynomials basis functions
is proposed.

2. Materials and Methods

Least Squares Method
Consider a singular multi-order fractional inegro-differential equation of the form:

Dαy(x) =
n∑
i=0

piy
(i)(x) + λ

∫ b

a

k(x, t)
y(t)√
x− t

dt+ f(x) (2.1)

together with the initial conditions

y(0) = α, y′(0) = β (2.2)

To solve equations (11) and (12), we assume a trial solution of the form:

yN(x) =
N∑
i=0

aiLi(x) (2.3)

where Li(x) is Legendre polynomials
we substitute (13) into (11)

Dα

{
N∑
i=0

aiLi(x)

}
=
{ n∑

i=0

pi

N∑
i=0

aiLi(x)
}

+
{
λ

∫ x

a

k(x, t)√
x− t

N∑
i=0

aiLi(t)dt
}

+{f(x)}

(2.4)
apply Jα operator on both sides of equation, we have

JαDα

{
N∑
i=0

aiLi(x)

}
= Jα

{ n∑
i=0

QiL
(i)(x)

}
+Jα

{
λ

∫ x

a

k(x, t)√
x− t

N∑
i=0

aiLi(t)dt
}

+Jα{f(x)}

(2.5)
where Qi = piai

N∑
i=0

aiLi(x) = Jα
{ n∑

i=0

QiL
(i)(x)

}
+Jα

{
λ

∫ x

a

k(x, t)√
x− t

yN(t)dt
}

+Jα{f(x)} (2.6)

and the residual equation R(a0, a1, · · · , aN) is written as

R(a0, a1, · · · , aN) =
N∑
j=0

ajLj(x)− Jα
{ n∑

i=0

QiL
(i)(x)

}

− λJα
{∫ x

a

k(x, t)√
x− t

( N∑
j=0

ajLj(t)
)}
− Jα{f(x)} = 0

(2.7)
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Now, we let the sum of the squares of errors s(a0, a1, · · · , aN) to be

s(a0, a1, · · · , aN) =

∫ 1

0

[
w(x)R(a0, a1, · · · , aN)

]2

dx (2.8)

where w(x) is the positive weight function defined in the interval [a, b].
Thus,

s(a0, a1, · · · , aN)

=

∫ 1

0

w(x)
[ N∑
j=0

ajLj(x)− Jα
{ n∑

i=0

QiL
(i)(x)

}

− λJα
∫ x

a

k(x, t)√
x− t

( N∑
j=0

ajLj(t)
)
dt− Jα{f(x)}

]2

dx = 0

(2.9)

The necessary condition for a minimum is that:

∂s

∂aj
= 0; j = 0, 1, 2, · · · , N (2.10)

so taking the partial derivative of equation (19) successively with respect to
aj; j = 0, 1, 2, · · · , N , we have

∫ 1

0
w(x)

[∑N
j=0 ajLj(x)−

[
Jα
{∑N

j=0QjL
(j)
j (x)

}
+ λJα

{∫ x
a

k(x, t)√
x− t

(∑N
j=0 ajLj(t)

)
dt
}
−

Jαf(x)
]]
d1dx = 0∫ 1

0
w(x)

[∑N
j=0 ajLj(x)−

[
Jα
{∑n

i=0QiL
(i)(x)

}
+ λJα

{∫ x
a

k(x, t)√
x− t

(∑N
j=0 ajLj(t)

)
dt
}
−

Jαf(x)
]]
d2dx = 0
...∫ 1

0
w(x)

[∑N
j=0 ajLj(x)−

[
Jα
{∑n

i=0QiL
(i)(x)

}
+ λJα

{∫ x
a

k(x, t)√
x− t

(∑N
j=0 ajLj(t)

)
dt
}
−

Jαf(x)
]]
dndx = 0


(2.11)

where d1, d2, · · · dn are the derivatives of the inner terns of the integral sign with
respect to aj = 0; j = 0, 1, 2, · · · , N . Thus, we have (N+1) algebraic linear
system of equations in (N+1) unknown constants a′is which are then solved by
maple 18 to obtain the unknown constants. Substituting the constant values into
equation (13) we get the required approximate solution.
Akbari-Ganji Method (AGM)
Consider a multi-order fractional singular inegro-differential equation of the form:

Dαy(x) +
n∑
i=0

piy
(i)(x) + λ

∫ x

a

k(x, t)y(t)√
x− t

dt = f(x) (2.12)

subject to initial conditions

y(0) = α, y′(0) = β (2.13)
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To solve equations (22) and (23), we assume a trial solution of the form:

yN(x) =
N∑
i=0

aiLi(x) (2.14)

where Li(x) is Legendre polynomials
we apply the initial conditions in equation (24) we obtain two equations

yN(0) =
n∑
i=0

aiLi(0) = α (2.15)

y′N(0) =
n∑
i=0

aiL
′
i(x) = β (2.16)

Next, substituting equation (26) into equation (24) we obtain

Dα
{ n∑

j=0

aiLi(x)
}

+
n∑
i=0

QjL
(i)
j (x) + λ

∫ b

a

k(x, t)√
x− t

N∑
j=0

ajLj(t)dt = f(x) (2.17)

Equation (27) is differentiated n− 2 times to obtain.
Dα
{∑N

j=0 ajL
′
j(x)

}
+
∑n

i=0QjL
(i+1)
j (x) + λ

∫ b
a
k(x,t)√
x−t
∑N

j=0 ajL
′
j(t)dt = f ′(x)

Dα
{∑N

j=0 ajL
′′
j (x)

}
+
∑n

i=0QjL
(i+2)
j (x) + λ

∫ b
a
k(x,t)√
x−t
∑N

j=0 ajL
′′
j (t)dt = f ′′(x)

...

Dα
{∑N

j=0 ajL
(n−2)
j (x)

}
+
∑n

i=0QjL
(i+n−2)
j (x) + λ

∫ b
a
k(x,t)√
x−t
∑N

j=0 ajL
(n−2)
j (t)dt = f (n−2)(x)


(2.18)

The equations (28) are evaluated at x = 0 to obtained n − 2 algebraic linear
equations. The system of algebraic linear equations after the evaluation are solved
together with equations (25) and (26) by Gaussian elimination method or any
mathematical software readily available to obtain the constant coefficients. Then
substitute the constants back into the assumed or trial solution, equation (24) to
obtain the required approximate solution.

3. Numerical Examples

Problem 1
Consider a third order singular fractional integro-differential equation of the form

y
′′′

(x)+D2.75y(x)+xy(x)+

∫ x

0

y(t)√
x− t

dt = 6+12x2 +
32

35
x

7
2 +6.61957590800x0.25

(3.1)

y(0) = 0, y′(0) = 0, y′′(0) = 0
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The exact solution is y(x) = x3

Let

yN(x) =
N∑
k=0

akLk(x)

= a0 + (2x− 1)a1 + (6x2 − 6x+ 1)a2 + (20x3 − 30x2 + 12x− 1)a3

+ (70x4 − 140x3 + 90x2 − 20x+ 1)a4 + (252x5 − 630x4 + 560x3 − 210x2

+ 30x− 1)a5 (3.2)

where N = 5, and Lk are the Legendre polynomials.
Least Square Method
Following the algorithm of the methodology, we got the values of the unknown
constants ai i = 0, 1, 2...N to be:

a0 = 0.2678334737, a1 = 0.4890789570, a2 = 0.2832738628, a3 = 0.06516880404,

a4 = 0.003367235102, a5 = 0.0002268105466

Substituting the constants into the trial solution (34), we got the required ap-
proximate solution as

y5(x) = 2.7510−11−1.10−10x−1.10−10x2+1.080000000x3−.4467412829x4+.46893151883x5

similarly
Akbari-Ganji’s Method
Following the algorithm of the methodology, we got the values of the unknown
constants ai i = 0, 1, 2...N to be:

a0 = 0.1754736632, a1 = 0.3030647436, a2 = 0.1488273474, a3 = 0.01767747155,

a4 = −0.003205892655, a5 = 0.0003529028525

Substituting the constants into the trial solution (34), we got the required ap-
proximate solution as

y5(x) = 1.5410−11−1.10−8x+1.09589770727x3−0.928158127e−1x4+0.5715625774e−1x5

Table 1. Example 1 with N=5

x Exact Solution LSM AGM LSM Error AGM Error
0.0 0.0000000000 0.0000000000 0.0000000001 1.5400e-11 5.7500e-11
0.1 0.0010000000 0.00083848841 0.00080121640 3.1170e-10 4.3785e-10
0.2 0.0080000000 0.00792672905 0.00768840666 1.6139e-10 6.8633e-09
0.3 0.0270000000 0.02690151847 0.02658009817 2.1692e-10 3.4025e-09
0.4 0.0640000000 0.06287318108 0.06387009884 3.3590e-08 1.0526e-09
0.5 0.1250000000 0.1241749968 0.12468972318 2.4593e-08 2.5142e-09
0.6 0.2160000000 0.2134463243 0.21537083210 7.6124e-08 5.0982e-09
0.7 0.3430000000 0.36424022056 0.3418607301 1.7820e-08 9.2316e-09
0.8 0.5120000000 0.5031401961 0.5118701464 3.5743e-06 1.5384e-09
0.9 0.7290000000 0.7129523105 0.7287030884 6.4741e-06 2.4059e-09
1.0 1.0000000000 0.9972993995 0.9987996812 1.0895e-06 3.5781e-08
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1.PNG

Figure 1. Example 1

Problem 2
Consider a second order singular fractional integro-differential equation of the
form

y
′′
(x)+D1.5y(x)−

∫ x

0

y(t)√
x− t

dt = 2.256758334x0.5+7.221626669x2.5−16

15
x

5
2−256

315
x

9
2 +2+12x2

(3.3)
0 ≤ x ≤ 1
y(0) = 0, y′(0) = 0
The exact solution is given as y(x) = x4 + x2

Let,

yN(x) =
N∑
k=0

akLk(x)

= a0 + (2x− 1)a1 + (6x2 − 6x+ 1)a2 + (20x3 − 30x2 + 12x− 1)a3

+ (70x4 − 140x3 + 90x2 − 20x+ 1)a4 + (252x5 − 630x4 + 560x3 − 210x2

+ 30x− 1)a5 (3.4)

where N = 5, and Lk are the Legendre polynomials.
Least Square Method
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Following the algorithm of the methodology, we got the values of the unknown
constants ai i = 0, 1, 2...N to be:

a0 = 0.1754736632, a1 = 0.3030647436, a2 = 0.1488273474, a3 = 0.01767747155,

a4 = −0.003205892655, a5 = 0.0003529028525

putting the values of ak into equation (36) to get an approximate solution

y5(x) = 1.10−11−2.10−6x+1.1250000001x2−1.20008923575x3+1.00025275159x4+

1.4746422227744x5

Akbari-Ganji’s Method

a0 = 0.2874537050, a1 = 0.560149388, a2 = 0.4971861988, a3 = 0.2439948375,

a4 = 0.05242454420, a5 = −0.00294532836

putting the values of ak into equation (36) to get an approximate solution

y5(x) = 1.1410−11−1.10−9x+1.114053524x2−1.004356229x3+1.0016326121x4+

1.1102813744x5

Table 2. Example 2 with N=5

x Exact Solution LSM AGM LSM Error AGM Error
0.0 0.0000000000 0.0000000001 0.0000000000 6.1400e-11 1.0000e-11
0.1 0.0101000000 0.0093591978 0.0087093202 2.2083e-08 3.6638e-08
0.2 0.0416000000 0.0408508113 0.0407322253 2.2333e-08 2.5868e-08
0.3 0.0981000000 0.0971879442 0.0955504840 2.7188e-07 7.6090e-08
0.4 0.1856000000 0.1624335822 0.1850809722 9.3460e-06 1.5472e-08
0.5 0.3125000000 0.3065009240 0.2953869622 2.4202e-06 2.5398e-05
0.6 0.4896000000 0.4760347808 0.4654262760 5.4726e-06 3.5877e-05
0.7 0.7301000000 0.7272985143 0.6999416230 1.1302e-05 4.4759e-05
0.8 1.0496000000 1.0349672010 1.0163529480 2.1717e-05 4.9343e-05
0.9 1.4661000000 1.4396474940 1.4347921290 3.9259e-05 4.6465e-05
1.0 2.0000000000 1.9546334080 1.9780430520 6.7330e-05 3.2587e-05

Problem 3
Consider a first order singular fractional integro-differential equation of the form

y
′
(x)−D0.5y(x) +

8x
3
2

3
√
π
− 2x

1
2

√
π

+
x

12
+

∫ x

0

xt√
x− t

y(t)dt = 0, 0 ≤ x ≤ 1 (3.5)

y(0) = 0
The exact solution is given as y(x) = x2 + x
Let,

yN(x) =
N∑
k=0

akLk(x)

= a0 + (2x− 1)a1 + (6x2 − 6x+ 1)a2 + (20x3 − 30x2 + 12x− 1)a3

+ (70x4 − 140x3 + 90x2 − 20x+ 1)a4 + (252x5 − 630x4 + 560x3 − 210x2

+ 30x− 1)a5 (3.6)



LAGJMA-2021/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 31

2.PNG

Figure 2. Example 2

where N = 5, and Lk are the Legendre polynomials.
Least Square Method
Following the algorithm of the methodology, we got the values of the unknown
constants ai i = 0, 1, 2...N to be:

a0 = 0.13612632, a1 = 0.0348927456, a2 = 0.2531427074, a3 = 0.01076172315,

a4 = −0.006120543515, a5 = 0.00000000000

putting the values of ak into equation (38) to get an approximate solution

y5(x) = 0.001006300000−x+1.0162500x2+0.0007923575x3+0.000231151x4+0.0000065x5

Akbari-Ganji’s Method

a0 = 0.2562430691, a1 = 0.132564931088, a2 = 0.39567861348, a3 = 0.22343948115,

a4 = 0.0263109403, a5 = −0.0025345300281

putting the values of ak into equation (38) to get an approximate solution

y5(x) = 0.000005000110−x+1.0012580000001x2+0.0008983505x3+0.00025075159x4

4. Discussion

In this section, the results obtained using the two proposed numerical meth-
ods with Legendre polynomials basis function are discussed. The methods were
used to solve some singular multi-order fractional Volterra integro-differential
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Table 3. Example 3 with N=5

x Exact Solution LSM AGM LSM Error AGM Error
0.0 0.0000000000 0.000000000 0.0000000000 3.4800e-11 2.0000e-11
0.1 0.1100000000 0.1100000250 0.1100000412 2.5061e-08 4.1281e-08
0.2 0.2400000000 0.2400000176 0.24000002455 1.7623e-08 2.4557e-08
0.3 0.3900000000 0.3900003273 0.3900000512 3.2731e-07 5.1237e-08
0.4 0.5600000000 0.5600004435 0.5600002641 4.435e-06 2.641e-08
0.5 0.7500000000 0.750002820 0.7500002395 2.8202e-06 2.3695e-05
0.6 0.9600000000 0.960005716 0.9600033421 5.716e-06 3.3421e-05
0.7 1.1900000000 1.190010540 1.190024359 1.0540e-05 2.4359e-05
0.8 1.4400000000 1.440021137 1.440049003 2.1137e-05 4.9003e-05
0.9 1.7100000000 1.710033425 1.710044064 3.3425e-05 4.4064e-05
1.0 2.0000000000 2.000017130 2.000032207 1.7130e-05 3.2207e-05

3.PNG

Figure 3. Example 3

equations and the results were presented vis-a-vis the exact solutions. Results
obtained are presented in tabular and graphical tables 1, 2 and 3 with the core-
sponding figures 1, 2 and 3 respectively. It was found that the methods are
suitable for the solutions of the class of problem considered. The two methods
produced results that converged rapidly to the exact solutions. We can say that
the two methods are easy to implement and are effective in solving our class of
problem.
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