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THREE-STEP SECOND DERIVATIVE HYBRID BLOCK
BACKWARD DIFFERENTIATION FORMULAE FOR SOLVING
SYSTEM OF DIFFERENTIAL ALGEBRAIC EQUATIONS
(DAES)

SONEYE RAMONI ADEBOLA*, AKINFENWA. OLUSEYE AREMU,
OSILAGUN JOHNSON ADEKUNLE, AND OKUNUGA SOLOMON ADEBOLA

ABSTRACT. This paper presents a new Second Derivative Hybrid Block Back-
ward Differentiation Formulae (SDHBBDF) for solving series of engineering
problems that are represented by some sets of Differential-Algebraic Equations
(DAEs). The main and complimentary methods, were developed by collocation
and interpolation techniques that are combined as a set of block equations. The
analysis of the method showed that it is consistent, convergent, and satisfied
the L-stability condition. The SDHBBDF was implemented on some physical
problems of DAEs with broad intervals and the numerical results demonstrated
that the method is accurate, efficient and suitable for solving DAEs. More so,
the method compared favorably well with some excellent methods in the liter-
ature.

1. INTRODUCTION

A differential algebraic equation is a set of differential equations with algebraic
constraints that can be written as

y'(t) = fily(t), 2(t), y(to) = vo
F(y(t), 2(1)) =0, z(to) = 20 (1.1)

1.1. Literature Review. Differential algebraic equations are useful for model-
ing a wide range of engineering problems . Numerous scientific and engi-
neering applications such as Circuit Analysis (CA), Computer-Aided Design and
Real-Time Simulation of Power Systems (CADRTSPS), Chemical Process Simu-
lation (CPS), and Optimal Control (OC) (Pandya, 1983). Constrained Multibody
Systems (MS) [9], Vehicle System Dynamics [22], Space Shuttle Simulation, and
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Incompressible Fluids Dynamics [I0], Linear Descriptor Dynamic Control System
(LDDCS), Linear-Time Invariant Descriptor Systems (LTIDS), Control Model
Linear Mechanical System (CMLMS) and Electric Circuit (EC) which contain
certain typical electrical system components use DAE systems.

According to [3, 4] the behavior of the capacitor and inductor is described by the
differential equations via a non-classical variational approach to solve the DAE
index-2.

Numerous numerical techniques have been proposed for DAEs, including the Ado-
mian Decomposition Method (ADM) for DAEs [17], Implicit Lie-Group Method
[8], Sequential Regularization Methods [18] and [19], Pade Series Approximation
Method [6], 7, 2], and Implicit Lie-Group Method [13]; [11] [14], [17], [11], [1], and
Variational Formulation Technique [4], 3] have been developed for the solution of
DAESs. These techniques are only effective for low-index situations and frequently
call for a unique problem structure. Although these methods can solve a number
of significant applications, the disadvantage is their high computing cost, which
might result in non-physical solutions. Backward Differentiation Formula (BDF)
[21] [20] presented more all-encompassing strategies.

In this research, we take into account physical model problems like the restricted
motion of a particle to a circular track, the linear circuit of the modified modal
analysis that directly leads to the system of DAEs, and the mechanical control
problem to choose an appropriate controller orbit of the mechanical system. Also
a descriptor index-2 control model of linear mechanical system. It provides hy-
brid methods based on BDF approach assembled in block form to solve not only
lower index DAEs but efficiently provide the solution for higher index ones.

2. DERIVATION OF THE METHOD

The new Second Derivatives Hybrid Block Backward Differentiation Formula
(SDHBBDF) on the interval [x,,, x,+3h], where h is the step-length, is developed
in this section.

Particularly, we assume that local y, denoted by Y'(z), approximates the exact
solution given by y(z) on the interval [z, x, + 3h].

r+s—1

Y(e)= ) a05(2) (2.1)

J=0

where the number of interpolation points r and the number of unique collocation
points s are respectively chosen to satisfy r = 2k +5, Ss > 3, a; are unknown
coeflicients to be calculated and ¢,(x) are polynomial basis function of degree
r+ s — 1. To derive SDHBBDF ¢(z,;) = ZL’ZH_Z-, s = 3 and & = 3. Now, we
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impose the following restrictions

; : 1.3 .5
E‘_ ajxiH»i = Yn+i, 1= Oa 57 17 57 2a 5 (22)
; 1 3 _5
. 1 .
Ei J ajxgz-i-z‘ :fn-i-i? 7':0757175727573 (23)
> i - Daal i =go,  i=3 (2.4)

Assuming that y,.; = Y (x, + ih) denotes the numerical approximation to the
exact solution, and that y (x,1:), furi = ¥ (xn +ih), gnsi = ¥ (z, + ih) denotes
the approximation to y”(z,.;), and n is the grid index. Equations , ,
and . create a system of 2k+8 euation that must be solved in order to de-
termine the coefficient a’s. The values of the as are subsequently substituted
into equation - After some algebraic processmg, The approach produces the
continuous equation in the form.

5
Za% yn+3 +hZB] n—&-J +h 'Vk( )gn-i-k (25)

7=0
Where a; (x), B i () and yx(x), are continuous coefficients.

The main discrete Second Derivative Hybrid Backward Differentiation Formula
(SDHBDF) is then produced by evaluating equation (2.5 at the point x = z,, +3
to obtain.

450

n — _—h2 n
Yn+3 =~ 1grg7t I3t grgy

+240000,,, 3 + 64800 fn+g> +

(300 o 4 101250 f 41 + 202500, 5 + 8820 fys + 12960f, , 1

71712 160000 203040

18587 Un+3 T 4gssT Untd T igner Ul
3040 286875 270000
(2.6)

* as5s7Y T agssT Yntt T igaer Ut

To obtain the complementary (SDHBDF), equation (2.5 is differentiated twice
with respect to x to get

() h2 {Z O// yn+1 h Z ﬁ yn+] h2'7k9n+k:} (2.7)

By evaluating (2.7)), at point x = {:pn+%, Tp41, Ly 35 Tnt2, mn+g} the discrete
complementary (SDHBDF )are obtained as
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590 h
h%g, b= _mh29"+3+48587 (12960 f,, + 101250 f,,11 + 202500 f,, 12 + 8820 fy, 43
71712 160000 203040
+12960,, 1 -+ 240000£,, 3 + 64300 fn+%)+myn+%+wyn+g—wyn+g
L3040 286875 270000
48587 T 48587 It T ygnRy Ynt?
(2.8)
gy = 20 go o 1 (26121120 Foo1 482923200, 5 — 5596848 f
Int2 = 519935 937100320750 nt3 nt3 nt3

201008
+8184 f,, + 240511500 f,, 11 + 553903500 f,, 42 + 933380 f,,13) h + Ta5761 Yt
16357376 75871504 5661101 1054360 7978027

T 137283 Y+ T 132201259+ T 09320750 T 1761 U T 201522 yn(+229)

157 1
h? = K3t —m—— (13796730 12560000 — 9727290
In+3 = T 185870 I3 72880500 Just + Juss Juts
56142
1258635 f,, + 169279875 1 — 153383625 f, 10 + 218645 f,3) h + 13537 Yt

3157604 5819526 2701813 483732 1857213

" Tas7e1 Ut T GorasTs s T 72880500 T asseT U T 104348 ygio)

103 1
Pognis = oWt =
Int1 = 50035 I+ 5 1660375
1501320, — 249867375 fns1 — 98892000 f s + 211295 frss) h
L 675206 38TIS56 034660 1)
546603757~ 145761 /T T 1457617012

3565()080fn+% — 376336000fn+% — 8323680fn+%

102 1
2 _ Y4 40 o L
h Gyl = 48587h gn+3+4372830 (44630004]%r§ 92278000fn+% + 3050910fn+g
4443325

+491990 f,, — 10725525 f,, 11 — 32309250 fr,42 + 8275 fr13) h — ~57og Y+

10043800 6830531 2897641 1019600 1153475

T 137283 Yt T Tasre107d T 2186415 T TasTer T TasseT ygiz)

The block hybrid second derivative backward differentiation formula is created

by combining the methods (2.6), [28), [9), Z10), @I1), and &12).
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3. ORDER OF ACCURACY AND STABILITY OF SDHBBDF

Using a matrix finite difference equation in block form, the three-step second
derivative hybrid block backward differentiation formulas are expressed as

ADY, = AOY, , + hBYf, + hBOf, i +h* (CVg,) (3.1)
where
T
Y = (yn+1ayn+1ayn+3ayn+2ayn+ 7yn+3> y Yw— (yn_,,yn 2,Y n_, y Yn— 1ayn_lyyn>
fw = <fn+17fn+1vfn+3afn+2v n+57fn+3> ( % fn 27 n_7 fn lafn_, fn)

T
Guw = (gn+% y On+1, gn+% y Gn+2, gn-i-g ) gn+3> y  Gu—-1 = <gn—g7 9n—2, gn—% y n—1, gn—% ) gn)
w=0,1,2,3,--- and n=0,4,....N —4
Additionally, the matrices AM, A© BM BO) CM are six by six matrices whose
matrices are given by the coefficient of (3.1)) given as
4443325 1019600  —10043800 —1153475  —6830531

_Phbhe P BRe R {EEY 8
SR, I, SRR 8 SRR
AV = s {6 AR _BEHR 0
obbEs iRk _if8SRe0 BMEEs ABREN
AR KRG fdbh  d0000 BEO
48587 48587 48587 48587 48587
7438334 1191725 9227800 1076975 33899 5911

B ottnis  sbrosss  oswol SR C6E°
B o U 1 TN 1) N 7 DO Y
BW = | 2R NS, Mk MBS 2B 03P
IR 1850 1R R0 80 AR
P56 26180 MBIt BBk TR S

48587 48587 48587 48587 48587 6941

000 0 0 =219 10 0 0 0 2
0000 0 L0080 001000 D8
000 00 il 00100 .
0) — 14 0 (1) — 185870
B 00000%%%07 ¢ 000 1 0 26
109%%% 5 2%%?35
00000218%%5 00001%
00000 48587 00000 48587

0 0 0 0 0 —2897641

0000 0 ST

AO) = sl

o o

109320750

00 0 00 P30

48587

3.1. Local Truncation Error.

Theorem 3.1. The SDHBBDF has a local truncation error (LTE) = Cy,hMy" (z,,)+
O(h'5).
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Proof. Supposed y(z,,) is an adequately differentiable function, and consider the
Taylor series expansion of y (xn + %) .7 =0,1,,5, ¢ (a:n + jh) 7 =20,1,6
and y”(x,+3h). we assume that yn—k% =y (z, + JQh) f (2 + ) =y (2, + %) =
y (2, + %h) and g (Tpi2) = V' (Xnsr) = ¥’ (x, + kh) and substitute the coeffi-
cients ag, j=0,1,---.5, B%, 7=0,1,---,6 and k, k = 3 into the equivalent
expression in ([2.6); after simplification, we discover the linear difference operator
to represent the local truncation error associated with the SDHBBDF as

. 5 6
J .
Liy(wn)ih} =y (xn + §h) - E 0 a;2yn +j2 = h E O By furi — P gnsr (3.2)
J= J=

LTE = CyhMy*(z,) + O(R')
Where %h, J = 6; a;

coefficients, k = 3. If y(x) is sufficiently differentiable, then we can write the
term in (3.2)) as a Taylor series expression of

) ) "
Y (xn + %h) i (xn + %) = y/ (xn + %) y g (xn+2h) = y” (xn+3h)

7 =20,1,,552, 7 =0,1,,6 and ~,, are constant

7=0
(o] ]h p
 (rang) = S 8 0 9
=0
= L {3jn}y’
) = 3o I
=0 '

Substituting (3.3]) and (3.2)), we obtain the equation
Ly (z,) : h] = coy(@) + erhy'z + coh®y"(x) + - - + c,hPyP () +

Where the constants ¢,, p=0,1,2,--- are given as follows
6
co = Z(a%)
j—O
6
=3y - 30
7=0
6 6
e =Y (ay) = S (ay) +
j=1 j=1
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The SDHBBDF in (3.1) has a maximum order accuracy of p if,
L{y(zn); h} = cpah? 1yt (2,) + O(hPH?)

And

co=c1=ca=0¢,=0, and ¢c,41 #0 (3.4)
Therefore, ¢, 1is the error constant and ¢, AP y?**(z,,) the major local truncal
at the point x,. Consequently, the SDHBBDF calculated error constant’s value
is given as

_{ —542502203  —22116398777623 983640934949
» =

7355496529920 99140324428873728 " 77453378460057600°
133520585749 221626415977 2435209734119
22949149173350400° 38726689230028800° 99140324428873728T

with order {13,13,13,13,13, 13}Tand T is the transpose.

3.2. Zero Stability. It is worth noting that zero-stability is concerned with the
stability of the difference system (3.1)) in the limit h — 0. Thus, as h — 0, (3.1),
becomes.
AWy = AOy,
Whose first characteristics polynomial p(R) given by |R;| <1, j=1,,6
287539200
p(R) = det [RAY — AO)] = TR5(1 —R) (3.5)

The SDHBBDF (3.1)) is zero stable for p(R) = 0 and satisfies |R;| < 1 and for
those roots with |R;| =1, j =1,--- ,6 the multiplicity doesn’t exceed 1.

3.3. Consistency and Convergence. It was observed that the block method
is consistent because order P > 1 and it is zero stable. According to [15],
convergence is defined as zero stability plus consistency, hence the method
converges.

3.4. Linear Stability. The stability characteristics of the block method ({3.1J),
are discussed and determined through the use of the test equation of the form:

Yy = My y' = Ny, A<0 (3.6)
Applying on yields
Yo, = N(2)Yy 4 (3.7)
Where N(z) is the amplification matrix with z = hA given by
N(z) = (AD + 2B + chu))—l (A© 4+ BO 4 )

The matrix N(z) has eigenvalue (&1, &9, &3,84,85,&) = (0,0,0,0,0,&), where the
dominant eigenvalue &g is a rational function of z given by:

_4(2106600002' + 33587192502 + 100938003002° — 278050374552° — 12895583824527 + .. + 373621248000)

fo(2) = 327560124022 + 1965360744021 4 3005500359620 — 3304330861802 — 262098(257)149428 + -+ 14944899
3.8

which is the stability function and z = hA € C. The stability domain of the
method (or region of absolute stability) S is defined as
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S=[zeC:R(z) <1] (3.9)

Specifically, when the left-half complex plane is contained in S, the method
is said to be A-stable. corresponds to the stability zone S. In Figure 1,
the plot depicted in blue is the stability region which encompasses the entire left
half complex plane thus the method is said to be A — stable and as in Cash
[?] the requirement that Maz.<o|R(z)] < 1, z real and lim,, . R(z) = 0 is
satisfied. Thus it is L-stable.

4. IMPLEMENTATION OF THE METHOD (SDBHBDF)
The technique is effectively implemented as a three-step block numerical inte-

T
grator for: obtaining approximations simultaneously for <yn 41 Ynt 15 Yng 3 Ynt 2, Yny 3 yn+3) .
Without the need for back values or predictors.
Step 1. Choose N for k = 3, h = b_T“ the number of blocks 7 = % using
(10) n = 0,w = 1 the values (y1,y2,y3)? are generated simultaneously over the
subinterval [t,t3] as yo are known from the IVP (1).
Step 2. for n = 3,w = 2, (y3...,ys)" are obtained over the subinterval [ts, 4]
since y3 is known from the first block
Step 3. The process is continued for n = 2k,...,N—kand w = 3, ..., to obtain
approximate solutions to (1) on sub-intervals [to, tg], ..., [tx_k, tn] N is a positive
integer and n the grid index.

5. NUMERICAL EXAMPLES

To demonstrate the accuracy of the SDHBBDF, we provide physical examples
in this section. MAPLE, 2016, was used to carry out all the calculations with a
wide range of closed intervals.

Example 5.1. We considered the nonlinear index-three Hessenberg DAESs system
below, which described the restricted motion of a particle to a circular track (see

D).
Y (t) = 2u2(t) — 25 (1) — 2y1 (t)ys(t)
Yi(t) = 2y1(t) — 257 (t) — y2(t)-ys()
0=wi(t) +y() -1, t=0
DAESs system above is supplied with the following consistent initial conditions
y(0) =1, y1(0) =0, 12(0)=0, y(0)=1
Exact solution is

y1(t) = cos(t), yo(t) =sin(t), v(t) =1+ sin(2t)

Example 5.2. We consider the linear circuit which the modified nodal analysis
leads directly to the system (see [0])
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1 -1 et G0 0 el 0
01 jL(—ce(zlf)l—i-ce(t)>jL 00 —1 €2 - 0
0 0 2 22 01 0 §(t) v(t)

by choosing
1
alt)=1+ Zsint+cost,02 =1,G=2
And the input voltage
1
v(t) = 4sint + 2 sin 2t
By Substitution, we obtain the following DAE
1 1
2+ 1 sin sin ¢ + cos cos t} er(t) + [2 + Z(Sm sint 4+ coscost)| e} (t) — ey(t) =0
—ey(t) +e5(t) — j(t) =0
1
es(t) = 4sinsint + 2 sin sin(2t)
The above system of DAE yields exact solution

e1(t) = sin(t) + cos(t), esft)

1 1
(t) + 1 sinsin(2t), j(t) = 3cost + 3 cos(2t) + sint
the reliable initial values

a0 =1, ex(0) =0, j(()):g

Remark 5.3. The graph showed that for (Celik and Bayram, 2005), the exact and
numerical solutions did not show a perfect relationship, while the current method
showed a perfect relationship based on the diagram presented above

Example 5.4. (Index-2 Linear Time-varying DAE with given U(t) over admis-
sible class). We considered the linear time invariant index-2 semi explicit DAE
problem [?] and [3] as

()= G ) () e Gt ) o (3o
0=(11) ( I ) —e '+ U(1), t €10,1]
Y12
The exact solution that taken from [?] is
cos(t)
1+2t

yi(t) = e, ya(t) = sint, yn(t) =
for a given U(t) = —sin(t)

Example 5.5 (The algebraic equation appears as a system of equations). We
considered differential and algebraic equations linear time invariant descriptor
system as a set of equations (see in [3]).
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1 = Apxy + Appxs + Biu(t) + fr
0= Agyxq + Bou(t) + fo

where,

10
= (1'1171712)T’:L'2 = (leanQ)T7A11 - ( 21 )

a= (5 5 ) A= ) )s fi=Uufa)

fo=(far, f2)" . Bi = (1,0)", By = (—1,0)"
u(t) € Av, where Aw is the class of admissible control? Exact solutions are
() = 2° + 22 + 1, r19(t) =2 + 23 + 2

To1(t) = 2° + 2* + x, Too(t) = 2% + 2* — 22°

Example 5.6. We considered an index-three system of differential algebraic
equations of second order, which can be viewed as a mechanical control prob-
lem. See [19] and [§].

Example 5.7. We considered evaluated the descriptor index-2 of the linear me-
chanical system’s two-control model as (see [28] and [3])

EX'"= AX + Bu(t) + f(t)

Where,
I 0 O 0 I I 0

E=|0 M 0 |, A= -K -D —-J |, B=|L |, X=
0 0 O H G 0 0

The representative models are represented by the matrices in the table below.
For additional information about this mechanical model, [28] says that all these
matrices are known with the proper dimensions. Consequently, the semi-explicit
descriptor system can be rewritten as follows using these matrices:
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10000 0o 0 1 0 1 0 t+1
01000 0O 0 0 1 1 0 t
00100 |=]-2 0 -1 —11|z@®)+| -1 [ul)+ 0
00010 0 —-1 -1 —-1 1 1 0
00001 1 1 0 0 0 0 2+t

First, this system needs to be converted into DAEs. The mechanical system
will undergo the transition and become a differential algebraic control system as
follows:

0O 0 0 0 1 0
0o —-1 -1 =2 1 -1
A11: -1 —1 -1 0 ) A12: 1 ) Bl_ 1 ) A21:(1 00 1)
0O 1 0 0 1 0
t ZL‘H(t)
_ 0 _ _ | r(t) _
fi(t) = 0 L) =t2+¢ x(t) = 1 (t) Ta(t) = w21(¢)
t+1 $14(t)
Which is an index-2 system of exact solution obtained by MAPLE 2016 as
1 5 2 6 38
x11(t) = —§t2 -3 + ge_t — \/?— sin(V/6t) — YT cos(V/6t)
1, 11, 19 1 257 89v/6 32
=t —t— — et in(v/6t) — — 6t
mlt) = gt = ot = 5 T 159 (V) — 5 cos(V61)
1 20, 62 3 257 35316 218
= D g Dt I in(V6t) — =—— 6t
malt) = ' = ort H g T ¢ T it gas Sm(V60) — g cos(VEt)
1 4 2 38
x14(t) = _6t2 ~ 5" ge’t + 65sin(v/6t) + YT cos(v/6t)
1, 25 62 1 _, 257 o 466 _ . 29
=—t"— —t— — — —e ' — —— —Aa — 6
x15(t) t 2775 1 10¢ 1316 T o 5sin(V6t) + T cos(v/6)

With initial condition
33'11(0) = —1, 3712(0) = 1, 1'13(0) = O, 1'14(0) = O, ZL’15O =—1

6. CONCLUSION

The main objective of this study was to develop a hybrid second derivative
block approach for the numerical solution of DAEs with a wide range of near
intervals. The numerical solution satisfactorily approximates the exact solution,
as shown in figures 17, and clearly distinguishes itself from certain other methods
used in the literature. In this study, a few numerical examples were tested with
a level of convergence and consistency that other methods could not match.
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FIGURE 1. Region of Absolute Stability for &k = 3

TABLE 1. Comparison between the proposed method and
exact solution

T [c]Proposed

method [c|Exact

solution [c]Abs

error

y1(t) [c]Propose

method [c|Exact

solution [c]Abs

error

y2(t) [c]Proposed

method [c|Exact

solution [c]Abs

error

y3(t)
0 0 0 0 0 0 0 0 0 0

0.1 0.9998 0.9998 | 1.650 x 1028 | 0.0410 | 0.0410 | 1.0500 x 10—29 | 1.0998 | 1.0998 | 1.50 x 10—28
0.2 0.9950 0.9950 | 9.660 x 1028 | 0.0998 | 0.0998 | 1.5800 x 10—27 | 1.1987 | 1.1987 | 3.85 x 10—27
0.3 0.9888 0.9888 | 1.873 x 1027 | 0.1494 | 0.1494 | 1.0720 x 10~27 | 1.2955 | 1.2955 | 5.40 x 1027
0.4 0.9801 0.9801 | 6.581 x 1027 | 0.1987 | 0.1987 | 1.3660 x 10—27 | 1.3894 | 1.3894 | 5.40 x 10— 27
0.5 0.9689 0.9689 | 1.064 x 1026 | 0.2474 | 0.2474 | 6.7290 x 10~27 | 1.4794 | 1.4794 | 1.54 x 10— 26
0.6 0.9553 0.9553 | 1.255 x 1026 [ 0.2955 | 0.2955 | 9.9490 x 10—27 | 1.5646 | 1.5646 | 3.525 x 10—27
0.7 0.9394 0.9394 | 1.639 x 1026 [ 0.3429 | 0.3429 | 2.0190 x 10—27 | 1.6442 | 1.6442 | 5.650 x 10—2°
0.8 0.9211 0.9211 | 2.542 x 1026 [ 0.3894 | 0.3894 | 1.2200 x 10=26 | 1.7174 | 1.7174 | 4.899 x 10— 26
0.9 0.9004 0.9004 | 3.421 x 1026 | 0.4350 | 0.4350 | 1.5620 x 1026 | 1.7833 | 1.7833 | 1.705 x 1026
1.0 0.8776 0.8776 | 4.283 x 1026 | 0.4794 | 0.4794 | 2.7060 x 1026 | 1.8415 | 1.8415 | 1.187 x 10— 26
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F1GURE 2. Shows that there is a perfect relationship between nu-
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Solution Points o
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o
1

2 3 4 5 (=]

*  MNumerical v5

w1 Numerical and Exact Against Timet

1

| Numerical v1

Exact v1]

to [0, 10] for example [5.1]

TABLE 2. Comparison between Numerical Solution, Exact solution

and Absolute Errors In SDHBBDF

t Numerical Solution Exact Solution Absolute Error in SDHBBDF

T Num1l | Num?2 | Num 3 Exq Exo FExg Errq Errg Errg

1.0 | 1.3570 | 2.11281 | 3.3823 1.3570 | 2.1281 | 3.8323 [[2.930 x 10727 | 1.38x 1026 | 7.160 x 1027
2.0 | 1.3818 | 3.5932 | 2.2543 1.3818 | 3.5932 | 2.2543 [ 1.590 x 10~27 | 4.825 x 10~26 | 2.910 x 10~27
3.0 | 1.0682 | 4.0253 | 0.7147 1.0682 | 4.0253 | 0.7147 ][ 2.220 x 10727 | 9.145 x 1025 | 4.342 x 10?7
4.0 | 0.4132 | 3.4980 | —0.6660 || 0.4932 | 3.4480 | —0.6660 || 4.254 x 10727 | 1.3624 x 10~2° | 4.562 x 1022
5.0 | —0.2027 | 2.1542 | —1.6631 || —0.2027 | 2.1542 | —1.6631 || 5.866 x 10~27 | 1.694 x 10~ 2®> | 7.800 x 10~ 28
6.0 | —08489 | 0.4946 | —2.3488 || —0.4946 | 0.4946 | —2.3488 || 4.653 x 10~27 | 1.838 x 10~ 2% | 2.270 x 10~ 27
7.0 | —1.2872 [ —1.2389 | —2.7832 || —1.2872 | —1.2389 | —2.7832 || 1.220 x 10727 | 1.792 x 10~2® | 6.610 x 10~ 7
8.0 | —1.4105 | —2.7799 | —2.7905 || —1.4105 | —2.7799 | —2.7405 || 4.700 x 10~27 | 1.579 x 10~2° | 1.275 x 1026
9.0 | —1.1883 | —3.8071 | —2.0655 || —1.1883 | —3.8071 | —2.0655 || 9.340 x 10~27 | 1.304 x 10~2®> | 8.030 x 10~ 27
10.0 | —0.6753 | —3.9717 | —0.5275 || —0.6753 | —3.9717 | —0.5275 || 1.016 x 10~2° | 1.028 x 10~2® | 5.7490 x 102
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FIGURE 3. Comparison of graph between present method and [6]
which shows the perfect relationship between present numerical

solution and exact solution from starting point to the end point in
which [6] did not.
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tween GRBA in [3] and SDHBBDF

97

GRBA [3]

SDHBBDF

Abs Errzq,

Abs Errzqo

Abs Errza;

Abs Erryqq

Abs Erryio

Abs Erryo

0

0

0

0

0

0

0.1

1.496 x 10797

1.299 x 107

2.3290 x 10~7

1.622 x 10=26

6.9343 x 10-%

1.5702 x 10=23

0.2

5.443 x 10797

3.842 x 10~ 7

6.633 x 10=7

7.205 x 10~26

1.6612 x 10~24

1.7159 x 10=23

0.3

3.639 x 10797

3.052 x 1077

4182 x 1077

1.744 x 10~%

2.6886 x 1024

1,5610 x 1023

0.4

3.007 x 10797

1.859 x 10~ 7

2.703 x 10~7

3.224 x 102

3.7075 x 102

1.4335 x 10=23

0.5

6.213 x 10797

4.818 x 1077

5.516 x 10~7

5.116 x 10=%°

4.6958 x 10~

1.2961 x 10~

0.6

2.583 x 10797

2.461 x 10~ 7

2.293 x 10~7

7.394 x 10=%°

5.6506 x 1024

1.1721 x 10=23

0.7

3.840 x 10797

2.770 x 10~ 7

2.754 x 10~7

1.002 x 1022

6.5728 x 10~ 2%

1.0662 x 10=23

0.8

5.108 x 10797

4.324 x 1077

3.628 x 1077

1.295 x 1024

0.7449 x 10~ 2%

0.7449 x 10~ 2%

0.9

1.605 x 10797

1.139 x 10~7

9.804 x 10~ 7

1.618 x 10~ 24

8.3278 x 104

8.9484 x 10~ 2%

1.0

3.043 x 10797

2.77 x 10710

1.93 x 10~10

1.002 x 1024

0.2482 x 10~ 2%

8.1932 x 10~ 2%

’ T | Numerical Solution H

Exact Solution ‘

0

0

0 0

0 0

0

0.1

0.9950

0.0050

0.9901

0.9950 | 0.0050

0.9901

0.2

0.9048

0.0998

0.8292

0.9048 | 0.0998

0.8292

0.3

0.8607

0.1494

0.7606

0.8607 | 0.1494

0.7606

0.4

0.8187

0.

1987 | 0.7001

0.8187 | 0.1987

0.7001

0.5

0.7788

0.2474

0.6459

0.7788 | 0.2474

0.6459

0.6

0.7408

0.2955

0.5971

0.7408 | 0.2955

0.5971

0.7

0.7047

0.3429

0.5526

0.7047 | 0.3429

0.5526

0.8

0.6703

0.3894

0.5117

0.6703 | 0.3894

0.5117

0.9

0.6376

0.4350

0.4739

0.6376 | 0.4350

0.4739

1.0

0.6065

0.4794

0.4388

0.6065 | 0.4794

0.4388

TABLE 4.

Comparisons between absolute
differential and constraints in the proposed method and
existing method [3]

errors among

ZABOON AND ADB ERROR, 2021 SDHBBDF

T Errl Err2 E’I‘T3 ET’I‘4 Errl Err2 ET’I‘3 ET’I‘4
01]7x1073] 0 0 0 0 8x 10729 [ 8 x 10731 [ 6.28 x 1020
0.2 0 0 0 0 0 8x 10729 [ 2 x 10739 | 4.10 x 10730
03[1x1078] 0 0 0 0 8x 10722 [ 3x 10737 [ 2.30 x 10730
0.4 0 0 0 0 1x10729[8x 1072 [ 3 x 10730 [ 3.80 x 10730
0.5 0 0 0 0 1x10729 [ 2x10728 [ 2x1073° | 1.00 x 10730
0.6 0 0 0 0 1x10729 [2%x 10728 [ 4 x 10730 [ 4.00 x 10730
07]6x10713] 0 0 0 0 2x10728 | 6x 1073 | 6.00 x 10730
0.8 0 0 0 0 1x1072[2x 1072 [ 6 x1073° [ 1.90 x 1029
091x107B] 0 0 0 1x10729[2%x 107283 x 10730 [ 4.00 x 10=2°
0.1 0 0 0 0 0 2x 1072 [ 5x 10730 | 4.30 x 10~2°




98

SONEYE. R. A, AKINFENWA. O. A, OSILAGUN. J. A, AND OKUNUGA. S. A

v1 Numerical and Exact Against Timet v2 Numerical and Exact Against Timet
1

0.5
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FIGURE 4. Shows the efficient and the level of accuracy between
numerical and exact solutions in SDHBBDF and the range of in-
terval can be increased to [0 ,10].

Numerical Solution Exact Solution
1.009 | 2.0000 | 0.0300 | 0.0009 || 1.0009 | 2.0000 | 0.0300 | 0.0009
1.0056 | 2.0005 | 0.0750 | 0.0060 || 1.0056 | 2.0005 | 0.0750 | 0.0060
1.0169 | 2.0025 | 0.1303 | 0.0190 || 1.0169 | 2.0025 | 0.1303 | 0.0190
1.0308 | 2.0063 | 0.1761 | 0.0357 || 1.0308 | 2.0063 | 0.1761 | 0.0357
1.0535 | 2.0150 | 0.2334 | 0.0638 || 1.0535 | 2.0150 | 0.2334 | 0.0638
1.0772 | 2.0250 | 0.2823 | 0.0933 || 1.0772 | 2.0250 | 0.2823 | 0.0933
1.1128 | 2.0478 | 0.3458 | 0.1370 || 1.1128 | 2.0478 | 0.3458 | 0.1370
1.1428 | 2.0725 | 0.4022 | 0.1785 || 1.1480 | 2.0725 | 0.4789 | 0.2350
1.2498 | 2.1581 | 0.5501 | 0.2844 || 1.2498 | 2.1581 | 0.5501 | 0.2844

TABLE 5. A Comparison of methods for Example|5.5| with 0 <t <
1and h =0.1

ILGM (2013) SDHBBDF

E’rrl E’r'r? ET’V‘S E’r'r4 Er'r5 E’rrl Err? E'rr3

Err4

0.0

1x10719 [ 1x10713 [1.0x107 [1.0x10"7 | 1x10°6 3x 10736 | 4.6 x 10732 | 8.1 x 1026

9.4 x 10-10

1.4 x

0.2

1x10712 ] 1x10719 [1.0x10719 [ 1.0x 10711 | 1.x 10~ ® 3x 10728 [5.6x 10727 [ 2.8 x 10~

1.0 x 10— 28

1.9 x

0.4

1x1071 [1.0x1071° [ 1.0x 10710 [ 1.0x 10710 | 1.x10°° 2x 10727 [22x10726 | 5.6 x 10~ 2

1.6 x 10~27

1.5 X

0.6

1x10711 [ 1.0x1072 [1.0x1070 [ 1.0x 10710 [ 1.0x 107 ° || 8.0x 10727 [ 4.1 x 10726 | 8.3 x 1026

8.3 x 10~27

5.0 x

0.8

1x107 1T [ 1.0x107% | 1.0x 1077 [ 1.0x 100 [ 1.0 x 10~7 2x107%6 [ 87x10726 [ 1.1 x 102

2.6 x 10~26

1.2 x

1.0

1x1071T [ 1.0x1079 | 1.0x107% | 1.0x10°9 | 1.x10°5 3x107%6 [1.3%x1072% [ 1.3 x 1025

6.3 x 10-26

2.4 x
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FIGURE 5. Shows that the range of interval can be increase to [0,
10] and perfect relationship between exact and numerical solutions

for example [5.5

Numerical Solution Exact Solution
0 0.0001 | 1.0000 0 0 0 0.0001 0 0 0
0.0100 | 0.1995 | 0.1000 | -0.0020 | -0.0398 || 0.0100 | 0.1995 | 0.1000 | -0.0020 | -0.0398
0.0399 | 0.3992 | 0.9992 | -0.0159 | -0.1596 || 0.0399 | 0.3992 | 0.9992 | 0.0159 | -0.1596
0.0897 | 0.5971 | 0.9960 | -0.0538 | - 0.3594 || 0.0897 | 0.5971 | 0.9960 | -0.0538 | - 0.3594
0.1591 | 0.7803 | 0.9873 | -0.1272 | -0.6392 || 0.1501 | 0.7893 | 0.9873 | -0.1272 | -0.6392
0.2472 | 0.9685 | 0.9690 | -0.2470 | -0.9990 || 0.2472 | 0.9685 | 0.9690 | -0.2470 | -0.9990
Matrix | Embody in a mechanical model
Z € R" | displacement vector
N € R? | vector of Lagrange multiplier
U input force
M inertial matrix
D damping matrix
K the stiffness
L Matrix of force distribution
G,H | coefficient matrices
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FIGURE 6. Shows that the range of interval can be increase to [0,
10] in SDHBBDF for example
TABLE bHA. Comparisons among differential states and
equality constraint absolute errors |z;;(t) — x;;| in the pro-
posed method and exact solutions with A = 107%
Exact solution in SDHBBDF Absolute errors in SDHBBDF
T Exti1 Extia Ext13 | Extisa | Extys Err11 Err12 Err13 Err1a Err1s
0.0 | -1.0000 | 0.9999 | 0.0000 | 0.0000 | -1.0000 || 4 x 1015 | 4 x 1015 [ 4 x 1015 [ 3.39 x 10~1° | 7.489 x 10— 10
0.1 | -1.0485 | 1.8531 | 0.0036 | 0.0473 | -1.0030 || 3 x 10798 | 3 x 10798 | 3 x 10798 | 2.87 x 10798 | 1.120 x 10~96
0.2 [ -1.0949 | 1.7095 | 0.0138 | 0.0899 | -1.0949 || 1 x 10797 [ 1 x 10798 [ 1 x 10798 | 1.14 x 10797 | 3.086 x 10~ 06
0.3 [ -1.1383 | 0.5710 | 0.0298 | 0.1271 | -1.0250 || 3 x 10797 | 2x 10797 | 2 x 10797 | 2.25 x 1097 | 3.086 x 10~ 06
0.4 | -1.1794 | 0.4355 | 0.0509 | 0.1594 | -1.0430 || 4 x 10797 | 3 x 10797 | 3 x 10797 | 4.41 x 10797 | 3.953 x 10~ 96
0.5 | -1.2179 | 0.3030 | 0.0767 | 0.1866 | -1.0652 || 7 x 10797 | 4 x 10797 | 5 x 1097 [ 6.77 x 10797 | 4.766 x 10~96
0.6 | -1.2532 | 0.1758 | 0.1058 | 0.2082 | -1.0906 || 1 x 10797 | 6 x 10727 | 7x 10797 [ 9.59 x 1097 | 5.510 x 1096
0.7 | -1.2863 | 0.0502 | 0-.1387 | 0.2250 | -1.1197 || 1 x 10798 | 7 x 10797 [ 8 x 10797 | 1.28 x 10~ 98 | 6.230 x 10~ 96
0.8 | -1.3164 | -0.0709 | 0.1740 | 0.2364 | -1.1515 || 2x 10798 | 8 x 10797 [ 1 x 1097 | 1.65 x 1096 | 6.900 x 10— 96
0.9 | -1.3439 [ -0.1888 | 0.2115 | 0.2427 | -1.1861 || 2x 10796 [ 9 x 10797 | 1 x 10796 | 2.05 x 1096 | 7.550 x 10~ 06
1.0 | -1.3689 | -0.3041 | 0.2511 [ 0.2439 | -1.2233 [ 3x 10796 [ 9 x 10797 | 1 x 10796 | 2.49 x 10-96 | 8.170 x 1096
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TABLE 5B. Comparisons among differential states and
equality constraint absolute errors |z;;(t) — z;;| in SD-
HBBDF and exact solutions with h = 107%

NUMERICAL SOLUTION IN SDHBBDF
Numiy | Numis | Numqs | Numqy Numis
-1.0000 | 0.9999 | 0.0000 | 0.0000 -1.0000
-1.0485 | 1.8531 | 0.0036 | 0.0473 -1.0030
-1.0949 | 1.7095 | 0.0138 | 0.0899 -1.0949
-1.1383 | 0.5710 | 0.0298 | 0.1271 -1.0250
-1.1794 | 0.4355 | 0.0509 | 0.1594 -1.0430
-1.2179 | 0.3030 | 0.0767 | 0.1866 -1.0652
-1.2532 | 0.1758 | 0.1058 | 0.2082 -1.0906
-1.2863 | 0.0502 | 0.1387 | 0.2250 -1.1197
-1.3164 | -0.0709 | 0.1740 | 0.2364 -1.1515
-1.3439 | -0.1888 | 0.2115 | 0.2427 -1.1861
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