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THREE-STEP SECOND DERIVATIVE HYBRID BLOCK
BACKWARD DIFFERENTIATION FORMULAE FOR SOLVING

SYSTEM OF DIFFERENTIAL ALGEBRAIC EQUATIONS
(DAES)

SONEYE RAMONI ADEBOLA∗, AKINFENWA. OLUSEYE AREMU,
OSILAGUN JOHNSON ADEKUNLE, AND OKUNUGA SOLOMON ADEBOLA

Abstract. This paper presents a new Second Derivative Hybrid Block Back-
ward Differentiation Formulae (SDHBBDF) for solving series of engineering
problems that are represented by some sets of Differential-Algebraic Equations
(DAEs). The main and complimentary methods, were developed by collocation
and interpolation techniques that are combined as a set of block equations. The
analysis of the method showed that it is consistent, convergent, and satisfied
the L-stability condition. The SDHBBDF was implemented on some physical
problems of DAEs with broad intervals and the numerical results demonstrated
that the method is accurate, efficient and suitable for solving DAEs. More so,
the method compared favorably well with some excellent methods in the liter-
ature.

1. Introduction

A differential algebraic equation is a set of differential equations with algebraic
constraints that can be written as

y′(t) = f1(y(t), z(t)), y(t0) = y0

fz(y(t), z(t)) = 0, z(t0) = z0 (1.1)

1.1. Literature Review. Differential algebraic equations are useful for model-
ing a wide range of engineering problems (1.1). Numerous scientific and engi-
neering applications such as Circuit Analysis (CA), Computer-Aided Design and
Real-Time Simulation of Power Systems (CADRTSPS), Chemical Process Simu-
lation (CPS), and Optimal Control (OC) (Pandya, 1983). Constrained Multibody
Systems (MS) [9], Vehicle System Dynamics [22], Space Shuttle Simulation, and
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Incompressible Fluids Dynamics [10], Linear Descriptor Dynamic Control System
(LDDCS), Linear-Time Invariant Descriptor Systems (LTIDS), Control Model
Linear Mechanical System (CMLMS) and Electric Circuit (EC) which contain
certain typical electrical system components use DAE systems.
According to [3, 4] the behavior of the capacitor and inductor is described by the
differential equations via a non-classical variational approach to solve the DAE
index-2.
Numerous numerical techniques have been proposed for DAEs, including the Ado-
mian Decomposition Method (ADM) for DAEs [17], Implicit Lie-Group Method
[8], Sequential Regularization Methods [18] and [19], Pade Series Approximation
Method [6, 7, 2], and Implicit Lie-Group Method [13]; [11] [14], [17], [11], [1], and
Variational Formulation Technique [4, 3] have been developed for the solution of
DAEs. These techniques are only effective for low-index situations and frequently
call for a unique problem structure. Although these methods can solve a number
of significant applications, the disadvantage is their high computing cost, which
might result in non-physical solutions. Backward Differentiation Formula (BDF)
[21] [20] presented more all-encompassing strategies.
In this research, we take into account physical model problems like the restricted
motion of a particle to a circular track, the linear circuit of the modified modal
analysis that directly leads to the system of DAEs, and the mechanical control
problem to choose an appropriate controller orbit of the mechanical system. Also
a descriptor index-2 control model of linear mechanical system. It provides hy-
brid methods based on BDF approach assembled in block form to solve not only
lower index DAEs but efficiently provide the solution for higher index ones.

2. Derivation of the Method

The new Second Derivatives Hybrid Block Backward Differentiation Formula
(SDHBBDF) on the interval [xn, xn+3h], where h is the step-length, is developed
in this section.

Particularly, we assume that local y, denoted by Y (x), approximates the exact
solution given by y(x) on the interval [xn, xn + 3h].

Y (x) =
r+s−1∑
j=0

ajφj(x) (2.1)

where the number of interpolation points r and the number of unique collocation
points s are respectively chosen to satisfy r = 2k + 5, Ss > 3, aj are unknown
coefficients to be calculated and φj(x) are polynomial basis function of degree

r + s − 1. To derive SDHBBDF φ(xn+j) = xjn+i, s = 3 and k = 3. Now, we



LAGJMA-2023/ UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 83

impose the following restrictions

13∑
j=0

ajx
j
n+i = yn+i, i = 0,

1

2
, 1,

3

2
, 2,

5

2
(2.2)

13∑
j=1

j ajx
j−1
n+i = fn+i, i = 0,

1

2
, 1,

3

2
, 2,

5

2
, 3 (2.3)

13∑
j=2

j(j − 1)ajx
j−2
n+i = gn+i, i = 3 (2.4)

Assuming that yn+i = Y (xn + ih) denotes the numerical approximation to the
exact solution, and that y (xn+i) , fn+i = y′ (xn + ih), gn+i = y′′ (xn + ih) denotes
the approximation to y′′(xn+i), and n is the grid index. Equations (2.2), (2.3),
and (2.4) create a system of 2k+8 euation that must be solved in order to de-
termine the coefficient a′js. The values of the a′js are subsequently substituted
into equation (2.1). After some algebraic processing, The approach produces the
continuous equation in the form.

y(x) =
5∑

j=0

α j
2
(x)yn+ j

2
+ h

6∑
j=0

β j
2
(x)fn+ j

2
+ h2γk(x)gn+k (2.5)

Where α j
2
(x), β j

2
(x) and γk(x), are continuous coefficients.

The main discrete Second Derivative Hybrid Backward Differentiation Formula
(SDHBDF) is then produced by evaluating equation (2.5) at the point x = xn +3
to obtain.

yn+3 = − 450

48587
h2gn+3+

h

48587

(
300fn + 101250fn+1 + 202500fn+2 + 8820fn+3 + 12960fn+ 1

2

+240000fn+ 3
2

+ 64800fn+ 5
2

)
+

71712

48587
yn+ 1

2
+

160000

48587
yn+ 3

2
− 203040

48587
yn+ 5

2

+
3040

48587
yn +

286875

48587
yn+1 −

270000

48587
yn+2 (2.6)

To obtain the complementary (SDHBDF), equation (2.5) is differentiated twice
with respect to x to get

y′′(x) =
1

h2

{
5∑

i=0

α′′j
2

(x)yn+ j
2
− h

6∑
i=0

β′′j
2

(x)yn+ j
2
− h2γkgn+k

}
(2.7)

By evaluating (2.7), at point x =
{
xn+ 1

2
, xn+1, xn+ 3

2
, xn+2, xn+ 5

2

}
the discrete

complementary (SDHBDF)are obtained as
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h2gn+ 5
2

= − 590

48587
h2gn+3+

h

48587
(12960fn + 101250fn+1 + 202500fn+2 + 8820fn+3

+12960fn+ 1
2

+ 240000fn+ 3
2

+ 64800fn+ 5
2

)
+

71712

48587
yn+ 1

2
+

160000

48587
yn+ 3

2
−203040

48587
yn+ 5

2

+
3040

48587
yn +

286875

48587
yn+1 −

270000

48587
yn+2

(2.8)

h2gn+2 =
216

242935
h2gn+3+

1

109320750

(
26121120fn+ 1

2
+ 82923200fn+ 3

2
− 5596848fn+ 5

2

+8184fn + 240511500fn+1 + 553903500fn+2 + 933380fn+3)h+
201008

145761
yn+ 1

2

+
16357376

437283
yn+ 3

2
+

75871504

18220125
yn+ 5

2
+

5661101

109320750
yn+

1054360

145761
yn+1−

7978027

291522
yn+2

(2.9)

h2gn+ 3
2

= − 157

485870
h2gn+3+

1

72880500

(
13796730fn+ 1

2
+ 12560000fn+ 3

2
− 9727290fn+ 5

2

+258635fn + 169279875fn+1 − 153383625fn+2 + 218645fn+3)h+
56142

48587
yn+ 1

2

− 3157604

145761
yn+ 3

2
+

5819526

6073375
yn+ 5

2
+

2701813

72880500
yn +

483732

48587
yn+1 +

1857213

194348
yn+2

(2.10)

h2gn+1 = − 103

242935
h2gn+2+

1

54660375

(
35650080fn+ 1

2
− 376336000fn+ 3

2
− 8323680fn+ 5

2

+501320fn − 249867375fn+1 − 98892000fn+2 + 211295fn+3)h

+
675296

54660375
yn −

3871856

145761
yn+1 +

934660

145761
yn+2 (2.11)

h2gn+ 1
2

= − 102

48587
h2gn+3+

1

4372830

(
44630004fn+ 1

2
− 92278000fn+ 3

2
+ 3050910fn+ 5

2

+491990fn − 10725525fn+1 − 32309250fn+2 + 8275fn+3)h−
4443325

97174
yn+ 1

2

+
10043800

437283
yn+ 3

2
+

6830531

1457610
yn+ 5

2
+

2897641

2186415
yn +

1019600

145761
yn+1 +

1153475

48587
yn+2

(2.12)

The block hybrid second derivative backward differentiation formula is created
by combining the methods (2.6), (2.8), (2.9), (2.10), (2.11), and (2.12).
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3. Order of Accuracy and Stability of SDHBBDF

Using a matrix finite difference equation in block form, the three-step second
derivative hybrid block backward differentiation formulas are expressed as

A(1)Yw = A(0)Yw−1 + hB(1)fw + hB(0)fw−1 + h2
(
C(1)gw

)
(3.1)

where

yw =
(
yn+ 1

2
, yn+1, yn+ 3

2
, yn+2, yn+ 5

2
, yn+3

)T
, yw−1 =

(
yn− 5

2
, yn−2, yn− 3

2
, yn−1, yn− 1

2
, yn

)T
fw =

(
fn+ 1

2
, fn+1, fn+ 3

2
, fn+2, fn+ 5

2
, fn+3

)T
, fw−1 =

(
fn− 5

2
, fn−2, fn− 3

2
, fn−1, fn− 1

2
, fn

)T
gw =

(
gn+ 1

2
, gn+1, gn+ 3

2
, gn+2, gn+ 5

2
, gn+3

)T
, gw−1 =

(
gn− 5

2
, gn−2, gn− 3

2
, gn−1, gn− 1

2
, gn

)T
w = 0, 1, 2, 3, · · · and n = 0, 4, ..., N − 4

Additionally, the matrices A(1), A(0), B(1), B(0), C(1) are six by six matrices whose
matrices are given by the coefficient of (3.1) given as

A(1) =



4443325
97174

1019600
145761

−10043800
437283

−1153475
48587

−6830531
457610

0
−675296
145761

3871856
145761

−6285056
437283

934660
145761

1905884
18220125

0
−56142
48587

−483732
48587

3157604
145761

−1857213
194348

−5819526
6073375

0
−201008
145761

−1054360
145761

−6357376
437282
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219522

−78571504
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0
−2206375
291522

−1590800
48587

−11605400
437283

−2276675
145761

−125206261
2429350

0
−71712
48587

−286875
48587

−160000
48587

270000
48587

203040
48587

1



B(1) =



7438334
728805

1191725
48587

9227800
437283

1076975
145761

33899
48587

5911
312345−792224

1214675
666313
145761

3010688
437283

87904
48587

554912
3644025

6037
1561725−459891

2429350
−451413
194348

−251201
145761

409023
194348

324243
2429350

−6247
2082300−870704

145761
−106894
48587

−3316928
437283

−738538
145761

−621872
1214675

−1334
1561725−65579

48587
−1612925
145761

−12549400
437283

−1480175
48587

−8756798
728805

7927
62469−12960

48587
−101250
48587

−240000
48587

−202500
48587

−64800
48587

−1260
6941



B(0) =


0 0 0 0 0 −49199

437283
0 0 0 0 0 −100264

10932075
0 0 0 0 0 −51727

14576100
0 0 0 0 0 −55067

10932075
0 0 0 0 0 −66287

2186415
0 0 0 0 0 −300

48587

 C(1) =


1 0 0 0 0 102

48587
0 1 0 0 0 −103

242935
0 0 1 0 0 157

485870
0 0 0 1 0 216

242935
0 0 0 0 1 590

48587
0 0 0 0 0 450

48587



A(0) =


0 0 0 0 0 −2897641

2186415
0 0 0 0 0 −5403956

54660375
0 0 0 0 0 −2701813

72880500
0 0 0 0 0 −5661101

109320750
0 0 0 0 0 −3374737

109320750
0 0 0 0 0 −3040

48587



3.1. Local Truncation Error.

Theorem 3.1. The SDHBBDF has a local truncation error (LTE) = C14h
14y14(xn)+

O(h15).
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Proof. Supposed y(xn) is an adequately differentiable function, and consider the
Taylor series expansion of y

(
xn + jh

2

)
, j = 0, 1, , 5, y′

(
xn + j

2
h
)
, j = 0, 1, 6

and y′′(xn+3h). we assume that yn+ j
2

= y
(
xn + jh

2

)
, f
(
xn + j

2

)
= y′

(
xn + j

2

)
=

y′
(
xn + jh

2

)
and g (xn+2) = y′′ (xn+k) = y′′ (xn + kh) and substitute the coeffi-

cients α j
2
, j = 0, 1, · · · , 5, β j

2
, j = 0, 1, · · · , 6 and k, k = 3 into the equivalent

expression in (2.6); after simplification, we discover the linear difference operator
to represent the local truncation error associated with the SDHBBDF as

L {y(xn);h} = y

(
xn +

j

2
h

)
−

5∑
j=0

aj2yn + j2− h
6∑

j=0

β j
2
fn+ j

2
− h2γkgn+k (3.2)

LTE = C14h
14y14(xn) +O(h15)

Where j
2
h, j = 6; α j

2
j = 0, 1, , 5; j2, j = 0, 1, , 6 and γk, are constant

coefficients, k = 3. If y(x) is sufficiently differentiable, then we can write the
term in (3.2) as a Taylor series expression of

y

(
xn +

j

2
h

)
, f

(
xn +

j

2

)
= y′

(
xn +

jh

2

)
, g (xn+2h) = y′′ (xn+3h)

y
(
xn+ j

2

)
=
∞∑
j=0

h2
{

jh
2

}p
P !

yp(xn)

y′
(
xn+ j

2

)
=
∞∑
j=0

h2
{

jh
2

}p
P !

yp+1(xn)

y′′ (xn+3j) =
∞∑
j=0

h2
{3jh}p

P !
yp+2(xn)

(3.3)

Substituting (3.3) and (3.2), we obtain the equation

L [y (xn) : h] = c0y(x) + c1hy
′x+ c2h

2yu(x) + · · ·+ cph
pyp(x) +

Where the constants cp, p = 0, 1, 2, · · · are given as follows

c0 =
6∑

j=0

(α j
2
)

c1 =
6∑

j=1

(α j
2
)−

6∑
j=0

(β j
2
)

c2 =
6∑

j=1

(α j
2
)−

6∑
j=1

(α j
2
) + γk

cp =
1

p!

[
6∑

j=1

(
j

2

)p(
α j

2
.

(
j

2

)p)]
− 1

(p− 1)!

[
6∑

j=1

β j
2
.

(
j

2

)p−1
]

+
1

(p− 2)!
γkk

(p)

�
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The SDHBBDF in (3.1) has a maximum order accuracy of p if,

L {y(xn);h} = cp+1h
p+1yp+1(xn) +O(hp+2)

And
c0 = c1 = c2 = cp = 0, and cp+1 6= 0 (3.4)

Therefore, cp+1is the error constant and cp+1h
p+1yp+1(xn) the major local truncal

at the point xn. Consequently, the SDHBBDF calculated error constant’s value
is given as

cp =

{
−542502203

7355496529920
,
−22116398777623

99140324428873728
,

983640934949

77453378460057600
,

133520585749

22949149173350400
,

221626415977

38726689230028800
,

2435209734119

99140324428873728T

}
with order {13, 13, 13, 13, 13, 13}Tand T is the transpose.

3.2. Zero Stability. It is worth noting that zero-stability is concerned with the
stability of the difference system (3.1) in the limit h→ 0. Thus, as h→ 0, (3.1),
becomes.

A(1)Yw = A(0)Yw−1
Whose first characteristics polynomial p(R) given by |Rj| ≤ 1, j = 1, , 6

ρ(R) = det
[
RA(1) − A(0)

]
=

287539200

631
R5(1−R) (3.5)

The SDHBBDF (3.1) is zero stable for p(R) = 0 and satisfies |Rj| < 1 and for
those roots with |Rj| = 1, j = 1, · · · , 6 the multiplicity doesn’t exceed 1.

3.3. Consistency and Convergence. It was observed that the block method
(3.1) is consistent because order P > 1 and it is zero stable. According to [15],
convergence is defined as zero stability plus consistency, hence the method (2.9)
converges.

3.4. Linear Stability. The stability characteristics of the block method (3.1),
are discussed and determined through the use of the test equation of the form:

y′ = λy y′′ = λ2y, λ < 0 (3.6)

Applying (3.1) on (3.6) yields

Y$ = N(z)Yw−1 (3.7)

Where N(z) is the amplification matrix with z = hλ given by

N(z) =
(
A(1) + zB(1) + z2c(1)

)−1
.
(
A(0) +B(0) + c(0)

)
The matrix N(z) has eigenvalue (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = (0, 0, 0, 0, 0, ξ6), where the
dominant eigenvalue ξ6 is a rational function of z given by:

ξ6(z) =
4
(
210660000z11 + 3358719250z10 + 10093800300z9 − 27805037455z8 − 128955838245z7 + ..+ 373621248000

)
3275601240z12 + 19653607440z11 + 30055003596z10 − 330433086180z9 − 2620982571494z8 + + 14944899

(3.8)

which is the stability function and z = hλ ∈ C. The stability domain of the
method (or region of absolute stability) S is defined as
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S = [z ε C : R(z) ≤ 1] (3.9)

Specifically, when the left-half complex plane is contained in S, the method
is said to be A-stable. (3.8) corresponds to the stability zone S. In Figure 1,
the plot depicted in blue is the stability region which encompasses the entire left
half complex plane thus the method is said to be A − stable and as in Cash
[?] the requirement that Maxz≤0|R(z)| ≤ 1, z real and limz→−∞R(z) = 0 is
satisfied.Thus it is L-stable.

4. Implementation of the Method (SDBHBDF)

The technique is effectively implemented as a three-step block numerical inte-

grator for: (1.1) obtaining approximations simultaneously for
(
yn+ 1

2
, yn+1, yn+ 3

2
, yn+2, yn+ 5

2
, yn+3

)T
.

Without the need for back values or predictors.
Step 1. Choose N for k = 3, h = b−a

N
the number of blocks π = N

3
using

(10) n = 0, ω = 1 the values (y1, y2, y3)
T are generated simultaneously over the

subinterval [t0, t3] as y0 are known from the IVP (1).
Step 2. for n = 3, ω = 2, (y3 . . . , y6)

T are obtained over the subinterval [t3, t6]
since y3 is known from the first block
Step 3. The process is continued for n = 2k, . . . , N−k and ω = 3, . . . , π to obtain
approximate solutions to (1) on sub-intervals [t0, tk], . . . , [tN−k, tN ] N is a positive
integer and n the grid index.

5. Numerical Examples

To demonstrate the accuracy of the SDHBBDF, we provide physical examples
in this section. MAPLE, 2016, was used to carry out all the calculations with a
wide range of closed intervals.

Example 5.1. We considered the nonlinear index-three Hessenberg DAEs system
below, which described the restricted motion of a particle to a circular track (see
[1]).

y′′1(t) = 2y2(t)− 2y32(t)− 2y1(t)y3(t)

y′′1(t) = 2y1(t)− 2y31(t)− y2(t).y3(t)
0 = y21(t) + y22(t)− 1, t ≥ 0

DAEs system above is supplied with the following consistent initial conditions

y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1

Exact solution is

y1(t) = cos(t), y2(t) = sin(t), v(t) = 1 + sin(2t)

Example 5.2. We consider the linear circuit which the modified nodal analysis
leads directly to the system (see [6])
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 1 −1
0 1
0 0

+

(
c1e1(t)

−c2e1(t) + c2e2(t)

)
+

 G 0 0
0 0 −1
0 1 0

 e1
e2
j(t)

 =

 0
0
v(t)


by choosing

c1(t) = 1 +
1

4
sin t+ cos t, c2 = 1, G = 2

And the input voltage

v(t) = 4 sin t+
1

4
sin 2t

By Substitution, we obtain the following DAE[
2 +

1

4
sin sin t+ cos cos t

]
e1(t) +

[
2 +

1

4
(sin sin t+ cos cos t)

]
e′1(t)− e′2(t) = 0

− e′1(t) + e′2(t)− j(t) = 0

e2(t) = 4 sin sin t+
1

4
sin sin(2t)

The above system of DAE yields exact solution

e1(t) = sin(t) + cos(t), e2(t) = (t) +
1

4
sin sin(2t), j(t) = 3 cos t+

1

2
cos(2t) + sin t

the reliable initial values

e1(0) = 1, e2(0) = 0, j(0) =
7

2

Remark 5.3. The graph showed that for (Celik and Bayram, 2005), the exact and
numerical solutions did not show a perfect relationship, while the current method
showed a perfect relationship based on the diagram presented above

Example 5.4. (Index-2 Linear Time-varying DAE with given U(t) over admis-
sible class). We considered the linear time invariant index-2 semi explicit DAE
problem [?] and [3] as(

y11
y′12

)
=

(
−1 1
0 0

)(
y11
y′12

)
+

(
0

1 + 2t

)
+

(
1
0

)
U(t)

0 = (1 1)

(
y11
y′12

)
− e−t + U(t), t ∈ [0, 1]

The exact solution that taken from [?] is

y11(t) = e−t, y12(t) = sin t, y21(t) =
cos(t)

1 + 2t

for a given U(t) = −sin(t)

Example 5.5 (The algebraic equation appears as a system of equations). We
considered differential and algebraic equations linear time invariant descriptor
system as a set of equations (see in [3]).
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x1 = A11x1 + A12x2 +B1u(t) + f1

0 = A21x1 +B2u(t) + f2

where,

x1 = (x11, x12)
T , x2 = (x21, x22)

T , A11 =

(
1 0
2 1

)
A12 =

(
2 1
0 2

)
, A21 =

(
1 0
0 1

)
, f1 = (f11, f12)

T

f2 = (f21, f22)
T , B1 = (1, 0)T , B2 = (−1, 0)T

u(t) ∈ ∆v, where ∆v is the class of admissible control? Exact solutions are

x11(t) = x5 + x2 + 1, x12(t) = x4 + x3 + 2

x21(t) = x5 + x4 + x, x22(t) = x2 + x3 − 2x5

Example 5.6. We considered an index-three system of differential algebraic
equations of second order, which can be viewed as a mechanical control prob-
lem. See [19] and [8].

u′′1(t) = 2u2(t) + λ(t)u1(t), u1(0) = 0

u′′2(t) = −2u1(t) + λ(t)u2(t), u2(0) = 1

u21(t) + u22(t)− 1 = 0, λ(0) = 0

With exact solution

u1(t) = t2, u2(t) = cos t2, λ(t) = −4t2

Example 5.7. We considered evaluated the descriptor index-2 of the linear me-
chanical system’s two-control model as (see [28] and [3])

EX ′ = AX +Bu(t) + f(t)

Where,

E =

 I 0 0
0 M 0
0 0 0

 , A =

 0 I I
−K −D −J
H G 0

 , B =

 0
L
0

 , X =

 Z
Z ′

µ


The representative models are represented by the matrices in the table below.
For additional information about this mechanical model, [28] says that all these
matrices are known with the proper dimensions. Consequently, the semi-explicit
descriptor system can be rewritten as follows using these matrices:
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


0 0 1 0 1
0 0 0 1 1
−2 0 −1 −1 1
0 −1 −1 −1 1
1 1 0 0 0

x(t) +


0
0
−1
1
0

u(t) +


t+ 1
t
0
0

t2 + t


First, this system needs to be converted into DAEs. The mechanical system
will undergo the transition and become a differential algebraic control system as
follows:

A11 =


0 0 0 0
0 −1 −1 −2
−1 −1 −1 0
0 1 0 0

 , A12 =


1
1
1
1

 , B1 =


0
−1
1
0

 , A21 = ( 1 0 0 1 )

f1(t) =


t
0
0

t+ 1

 f2(t) = t2 + t, x1(t) =


x11(t)
x12(t)
x13(t)
x14(t)

 , x2(t) = x21(t)

Which is an index-2 system of exact solution obtained by MAPLE 2016 as

x11(t) = −1

3
t2− 5

9
+

2

5
e−t−

√
6

5
sin(
√

6t)− 38

45
cos(
√

6t)

x12(t) =
1

9
t2 − 11

27
t− 19

81
+

1

2
e−t +

257

1134
e−3t − 89

√
6

189
sin(
√

6t)− 32

63
cos(
√

6t)

x13(t) =
1

9
t2 − 20

27
t+

62

81
+

3

10
e−t +

257

1134
e−3t +

353
√

6

945
sin(
√

6t)− 218

315
cos(
√

6t)

x14(t) = −1

6
t2 − 4

9
− 2

5
e−t + 65 sin(

√
6t) +

38

45
cos(
√

6t)

x15(t) = −1

9
t2 − 25

27
t− 62

81
− 1

10
e−t − 257

1134
e−3t +

46
√

6

9
45 sin(

√
6t) +

29

315
cos(
√

6)

With initial condition

x11(0) = −1, x12(0) = 1, x13(0) = 0, x14(0) = 0, x150 = −1

6. Conclusion

The main objective of this study was to develop a hybrid second derivative
block approach for the numerical solution of DAEs with a wide range of near
intervals. The numerical solution satisfactorily approximates the exact solution,
as shown in figures 17, and clearly distinguishes itself from certain other methods
used in the literature. In this study, a few numerical examples were tested with
a level of convergence and consistency that other methods could not match.
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Figure 1. Region of Absolute Stability for k = 3

Table 1. Comparison between the proposed method and
exact solution

T [c]Proposed

method [c]Exact

solution [c]Abs
error

y1(t) [c]Propose

method [c]Exact
solution [c]Abs

error

y2(t) [c]Proposed
method [c]Exact

solution [c]Abs
error
y3(t)

0 0 0 0 0 0 0 0 0 0

0.1 0.9998 0.9998 1.650× 10−28 0.0410 0.0410 1.0500× 10−29 1.0998 1.0998 1.50× 10−28

0.2 0.9950 0.9950 9.660× 10−28 0.0998 0.0998 1.5800× 10−27 1.1987 1.1987 3.85× 10−27

0.3 0.9888 0.9888 1.873× 10−27 0.1494 0.1494 1.0720× 10−27 1.2955 1.2955 5.40× 10−27

0.4 0.9801 0.9801 6.581× 10−27 0.1987 0.1987 1.3660× 10−27 1.3894 1.3894 5.40× 10−27

0.5 0.9689 0.9689 1.064× 10−26 0.2474 0.2474 6.7290× 10−27 1.4794 1.4794 1.54× 10−26

0.6 0.9553 0.9553 1.255× 10−26 0.2955 0.2955 9.9490× 10−27 1.5646 1.5646 3.525× 10−27

0.7 0.9394 0.9394 1.639× 10−26 0.3429 0.3429 2.0190× 10−27 1.6442 1.6442 5.650× 10−26

0.8 0.9211 0.9211 2.542× 10−26 0.3894 0.3894 1.2200× 10−26 1.7174 1.7174 4.899× 10−26

0.9 0.9004 0.9004 3.421× 10−26 0.4350 0.4350 1.5620× 10−26 1.7833 1.7833 1.705× 10−26

1.0 0.8776 0.8776 4.283× 10−26 0.4794 0.4794 2.7060× 10−26 1.8415 1.8415 1.187× 10−26
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Figure 2. Shows that there is a perfect relationship between nu-
merical and exact solutions and the range of interval can be increase
to [0, 10] for example 5.1.

Table 2. Comparison between Numerical Solution, Exact solution
and Absolute Errors In SDHBBDF

t Numerical Solution Exact Solution Absolute Error in SDHBBDF
T Num 1 Num 2 Num 3 Ex1 Ex2 Ex3 Err1 Err2 Err3
1.0 1.3570 2.11281 3.3823 1.3570 2.1281 3.8323 2.930× 10−27 1.38× 10−26 7.160× 10−27

2.0 1.3818 3.5932 2.2543 1.3818 3.5932 2.2543 1.590× 10−27 4.825× 10−26 2.910× 10−27

3.0 1.0682 4.0253 0.7147 1.0682 4.0253 0.7147 2.220× 10−27 9.145× 10−26 4.342× 10−27

4.0 0.4132 3.4980 −0.6660 0.4932 3.4480 −0.6660 4.254× 10−27 1.3624× 10−25 4.562× 10−22

5.0 −0.2027 2.1542 −1.6631 −0.2027 2.1542 −1.6631 5.866× 10−27 1.694× 10−25 7.800× 10−28

6.0 −08489 0.4946 −2.3488 −0.4946 0.4946 −2.3488 4.653× 10−27 1.838× 10−25 2.270× 10−27

7.0 −1.2872 −1.2389 −2.7832 −1.2872 −1.2389 −2.7832 1.220× 10−27 1.792× 10−25 6.610× 10−17

8.0 −1.4105 −2.7799 −2.7905 −1.4105 −2.7799 −2.7405 4.700× 10−27 1.579× 10−25 1.275× 10−26

9.0 −1.1883 −3.8071 −2.0655 −1.1883 −3.8071 −2.0655 9.340× 10−27 1.304× 10−25 8.030× 10−27

10.0 −0.6753 −3.9717 −0.5275 −0.6753 −3.9717 −0.5275 1.016× 10−25 1.028× 10−25 5.7490× 10−27
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Figure 3. Comparison of graph between present method and [6]
which shows the perfect relationship between present numerical
solution and exact solution from starting point to the end point in
which [6] did not.
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Table 3. Comparison of Absolute errors |yij(t)− yij(t)| be-
tween GRBA in [3] and SDHBBDF

GRBA [3] SDHBBDF
t Abs Errx11 Abs Errx12 Abs Errx21 Abs Erry11 Abs Erry12 Abs Erry21
0 0 0 0 0 0 0

0.1 1.496× 10−07 1.299× 10−7 2.329× 10−7 1.622× 10−26 6.9343× 10−25 1.5702× 10−23

0.2 5.443× 10−07 3.842× 10−7 6.633× 10−7 7.205× 10−26 1.6612× 10−24 1.7159× 10−23

0.3 3.639× 10−07 3.052× 10−7 4.182× 10−7 1.744× 10−25 2.6886× 10−24 1, 5610× 10−23

0.4 3.007× 10−07 1.859× 10−7 2.703× 10−7 3.224× 10−25 3.7075× 10−24 1.4335× 10−23

0.5 6.213× 10−07 4.818× 10−7 5.516× 10−7 5.116× 10−25 4.6958× 10−24 1.2961× 10−23

0.6 2.583× 10−07 2.461× 10−7 2.293× 10−7 7.394× 10−25 5.6506× 10−24 1.1721× 10−23

0.7 3.840× 10−07 2.770× 10−7 2.754× 10−7 1.002× 10−24 6.5728× 10−24 1.0662× 10−23

0.8 5.108× 10−07 4.324× 10−7 3.628× 10−7 1.295× 10−24 9.7449× 10−24 9.7449× 10−24

0.9 1.605× 10−07 1.139× 10−7 9.804× 10−7 1.618× 10−24 8.3278× 10−24 8.9484× 10−24

1.0 3.043× 10−07 2.77× 10−10 1.93× 10−10 1.002× 10−24 9.2482× 10−24 8.1932× 10−24

T Numerical Solution Exact Solution

0 0 0 0 0 0 0
0.1 0.9950 0.0050 0.9901 0.9950 0.0050 0.9901
0.2 0.9048 0.0998 0.8292 0.9048 0.0998 0.8292
0.3 0.8607 0.1494 0.7606 0.8607 0.1494 0.7606
0.4 0.8187 0.1987 0.7001 0.8187 0.1987 0.7001
0.5 0.7788 0.2474 0.6459 0.7788 0.2474 0.6459
0.6 0.7408 0.2955 0.5971 0.7408 0.2955 0.5971
0.7 0.7047 0.3429 0.5526 0.7047 0.3429 0.5526
0.8 0.6703 0.3894 0.5117 0.6703 0.3894 0.5117
0.9 0.6376 0.4350 0.4739 0.6376 0.4350 0.4739
1.0 0.6065 0.4794 0.4388 0.6065 0.4794 0.4388

Table 4. Comparisons between absolute errors among
differential and constraints in the proposed method and
existing method [3]

ZABOON AND ADB ERROR, 2021 SDHBBDF
T Err1 Err2 Err3 Err4 Err1 Err2 Err3 Err4

0.1 7× 10−13 0 0 0 0 8× 10−29 8× 10−31 6.28× 10−30

0.2 0 0 0 0 0 8× 10−29 2× 10−30 4.10× 10−30

0.3 1× 10−13 0 0 0 0 8× 10−29 3× 10−30 2.30× 10−30

0.4 0 0 0 0 1× 10−29 8× 10−29 3× 10−30 3.80× 10−30

0.5 0 0 0 0 1× 10−29 2× 10−28 2× 10−30 1.00× 10−30

0.6 0 0 0 0 1× 10−29 2× 10−28 4× 10−30 4.00× 10−30

0.7 6× 10−13 0 0 0 0 2× 10−28 6× 10−30 6.00× 10−30

0.8 0 0 0 0 1× 10−29 2× 10−28 6× 10−30 1.90× 10−29

0.9 1× 10−13 0 0 0 1× 10−29 2× 10−28 3× 10−30 4.00× 10−29

0.1 0 0 0 0 0 2× 10−28 5× 10−30 4.30× 10−29



98 SONEYE. R. A, AKINFENWA. O. A, OSILAGUN. J. A, AND OKUNUGA. S. A

Figure 4. Shows the efficient and the level of accuracy between
numerical and exact solutions in SDHBBDF and the range of in-
terval can be increased to [0 ,10].

Numerical Solution Exact Solution
1.009 2.0000 0.0300 0.0009 1.0009 2.0000 0.0300 0.0009
1.0056 2.0005 0.0750 0.0060 1.0056 2.0005 0.0750 0.0060
1.0169 2.0025 0.1303 0.0190 1.0169 2.0025 0.1303 0.0190
1.0308 2.0063 0.1761 0.0357 1.0308 2.0063 0.1761 0.0357
1.0535 2.0150 0.2334 0.0638 1.0535 2.0150 0.2334 0.0638
1.0772 2.0250 0.2823 0.0933 1.0772 2.0250 0.2823 0.0933
1.1128 2.0478 0.3458 0.1370 1.1128 2.0478 0.3458 0.1370
1.1428 2.0725 0.4022 0.1785 1.1480 2.0725 0.4789 0.2350
1.2498 2.1581 0.5501 0.2844 1.2498 2.1581 0.5501 0.2844

Table 5. A Comparison of methods for Example 5.5 with 0 ≤ t ≤
1 and h = 0.1

ILGM (2013) SDHBBDF

T Err1 Err2 Err3 Err4 Err5 Err1 Err2 Err3 Err4 Err5

0.0 1× 10−19 1× 10−13 1.0× 10−13 1.0× 10−17 1× 10−6 3× 10−36 4.6× 10−32 8.1× 10−26 9.4× 10−40 1.4× 10−35

0.2 1× 10−12 1× 10−10 1.0× 10−10 1.0× 10−11 1.× 10−5 3× 10−28 5.6× 10−27 2.8× 10−26 1.0× 10−28 1.9× 10−27

0.4 1× 10−11 1.0× 10−10 1.0× 10−10 1.0× 10−10 1.× 10−5 2× 10−27 2.2× 10−26 5.6× 10−26 1.6× 10−27 1.5× 10−26

0.6 1× 10−11 1.0× 10−9 1.0× 10−10 1.0× 10−10 1.0× 10−5 8.0× 10−27 4.1× 10−26 8.3× 10−26 8.3× 10−27 5.0× 10−26

0.8 1× 10−11 1.0× 10−9 1.0× 10−9 1.0× 10−10 1.0× 10−5 2× 10−26 8.7× 10−26 1.1× 10−25 2.6× 10−26 1.2× 10−25

1.0 1× 10−11 1.0× 10−9 1.0× 10−9 1.0× 10−9 1.× 10−5 3× 10−26 1.3× 10−25 1.3× 10−25 6.3× 10−26 2.4× 10−25
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Figure 5. Shows that the range of interval can be increase to [0,
10] and perfect relationship between exact and numerical solutions
for example 5.5

Numerical Solution Exact Solution
0 0.0001 1.0000 0 0 0 0.0001 0 0 0

0.0100 0.1995 0.1000 -0.0020 -0.0398 0.0100 0.1995 0.1000 -0.0020 -0.0398
0.0399 0.3992 0.9992 -0.0159 -0.1596 0.0399 0.3992 0.9992 0.0159 -0.1596
0.0897 0.5971 0.9960 -0.0538 - 0.3594 0.0897 0.5971 0.9960 -0.0538 - 0.3594
0.1591 0.7893 0.9873 -0.1272 -0.6392 0.1591 0.7893 0.9873 -0.1272 -0.6392
0.2472 0.9685 0.9690 -0.2470 -0.9990 0.2472 0.9685 0.9690 -0.2470 -0.9990

Matrix Embody in a mechanical model
Z ∈ Rn displacement vector
N ∈ Rq vector of Lagrange multiplier
U input force
M inertial matrix
D damping matrix
K the stiffness
L Matrix of force distribution

G,H coefficient matrices
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Figure 6. Shows that the range of interval can be increase to [0,
10] in SDHBBDF for example 5.6

Table 5a. Comparisons among differential states and
equality constraint absolute errors |xij(t) − xij| in the pro-
posed method and exact solutions with h = 10−04

Exact solution in SDHBBDF Absolute errors in SDHBBDF

T Ext11 Ext12 Ext13 Ext14 Ext15 Err11 Err12 Err13 Err14 Err15

0.0 -1.0000 0.9999 0.0000 0.0000 -1.0000 4× 10−15 4× 10−15 4× 10−15 3.39× 10−15 7.489× 10−10

0.1 -1.0485 1.8531 0.0036 0.0473 -1.0030 3× 10−08 3× 10−08 3× 10−08 2.87× 10−08 1.120× 10−06

0.2 -1.0949 1.7095 0.0138 0.0899 -1.0949 1× 10−07 1× 10−08 1× 10−08 1.14× 10−07 3.086× 10−06

0.3 -1.1383 0.5710 0.0298 0.1271 -1.0250 3× 10−07 2× 10−07 2× 10−07 2.25× 10−07 3.086× 10−06

0.4 -1.1794 0.4355 0.0509 0.1594 -1.0430 4× 10−07 3× 10−07 3× 10−07 4.41× 10−07 3.953× 10−06

0.5 -1.2179 0.3030 0.0767 0.1866 -1.0652 7× 10−07 4× 10−07 5× 10−07 6.77× 10−07 4.766× 10−06

0.6 -1.2532 0.1758 0.1058 0.2082 -1.0906 1× 10−07 6× 10−07 7× 10−07 9.59× 10−07 5.510× 10−06

0.7 -1.2863 0.0502 0-.1387 0.2250 -1.1197 1× 10−06 7× 10−07 8× 10−07 1.28× 10−06 6.230× 10−06

0.8 -1.3164 -0.0709 0.1740 0.2364 -1.1515 2× 10−06 8× 10−07 1× 10−07 1.65× 10−06 6.900× 10−06

0.9 -1.3439 -0.1888 0.2115 0.2427 -1.1861 2× 10−06 9× 10−07 1× 10−06 2.05× 10−06 7.550× 10−06

1.0 -1.3689 -0.3041 0.2511 0.2439 -1.2233 3× 10−06 9× 10−07 1× 10−06 2.49× 10−06 8.170× 10−06
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Table 5b. Comparisons among differential states and
equality constraint absolute errors |xij(t) − xij| in SD-
HBBDF and exact solutions with h = 10−04

NUMERICAL SOLUTION IN SDHBBDF
Num11 Num12 Num13 Num14 Num15

-1.0000 0.9999 0.0000 0.0000 -1.0000
-1.0485 1.8531 0.0036 0.0473 -1.0030
-1.0949 1.7095 0.0138 0.0899 -1.0949
-1.1383 0.5710 0.0298 0.1271 -1.0250
-1.1794 0.4355 0.0509 0.1594 -1.0430
-1.2179 0.3030 0.0767 0.1866 -1.0652
-1.2532 0.1758 0.1058 0.2082 -1.0906
-1.2863 0.0502 0.1387 0.2250 -1.1197
-1.3164 -0.0709 0.1740 0.2364 -1.1515
-1.3439 -0.1888 0.2115 0.2427 -1.1861
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