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ERGODIC THEOREM FOR QUANTUM DYNAMICAL
SEMIGROUP ON DECOHERENCE-FREE SUBALGEBRA OF A

QUANTUM MARKOV SEMIGROUP

EZEKIEL ABIODUN OLUWAFEMI∗, MICHEAL OLUNIYI OGUNDIRAN,
OLANREWAJU FABELURIN, AND BANKOLE VINCENT AKINREMI

Abstract. In this work, we study ergodic theorem for quantum dynamical
semigroup on decoherence-free subalgebra of quantum Markov semigroup. A
quantum dynamical semigroup of non-expansive maps which has at least one
stationary point was established on decoherence-free subalgebra.The measur-
ability of the semigroup was then used to ensure the weak convergence of the
Cesaro means to a stationary point.

1. Introduction

A decoherence-free subspace(DFs) is a subspace of a quantum systems Hilbert
space that is invariant to non-unitary dynamics. The study of decoherence-free
subspace began with a search for structured methods to avoid decoherence in
the subject of quantum information processing (QIP). The methods involved at-
tempts to identify particular states which have the potential of being unchanged
by certain decohering processes (i.e certain interaction with the environment).
These studies started with observations made by [25] who studied the conse-
quences of pure dephasing on two qubits that have the same interaction with the
environment. They found that two such qubits do not decohere. They also char-
acterized decoherence- free subspace (DFs) as a special class of quantum error
correcting codes.

In the approach of [4], if the space is an algebraic space (i.e a von Neumann
or a C*-algebra), the decoherence- free subspace becomes a decoherence-free
subalgebra. Therefore, if a von Neumann algebra is a quantum system (say
open), there is a part of the algebra that behaves like a closed system (i.e a part
that is decoherence-free). This can be used to study the asymptotic behavior
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of the quantum system.The evolution of a closed quantum system which does
not interact with the environment, can be described by a one-parameter group
of automorphism (at)t≥0 , with at(x) = eitHxe−itH and H self-adjoint. Inside an
open Quantum system, sometimes, one can have a subsystem evolving like a
closed quantum system where the typical effects of the interaction with the en-
vironment do not appear and the typical quantum features of the system, like
quantum coherence and entanglement of quantum states are preserved [11].

In recent years, there has been a growing interest in the use of Quantum Markov
Semigroup to model open quantum systems having subsystems which are not af-
fected by decoherence. In these applications, the Quantum Markov Semigroup
(in the Heisenberg picture) acts as a semigroup of automorphisms of a von Neu-
mann subalgebra N(T ) of B(h), called the Decoherence-free subalgebra. This
subalgebra allows identification of noise protected subsystems where states evolve
unitarily, moreover its structure and relationship with the set of fixed points also
has important consequences on the asymptotic behavior of the Quantum Markov
Semigroup. Decoherence-free subalgebra allows us to gain insight into the struc-
ture of a Quantum Markov Semigroup. Decoherence-free (DF) subalgebra of T
is therefore defined as follows:

N(T ) = {x ∈ B(h) : Tt(x
∗x) = Tt(x)∗Tt(x), Tt(xx

∗) = Tt(x)Tt(x)∗ ∀ t ≥ 0}.
(1.1)

In [12], the quantum Markov semigroup and their stationary states were stud-
ied. The convergence of the Cesaro means of quantum dynamical semigroup was
established. The aims of this work is to establish a quantum dynamical semigroup
of non-expansive maps which has at least one stationary point on decoherence-free
subalgebra and to find the weak convergence of the Cesaro means to a stationary
point.

2. Preliminaries

The following definitions, lemmas and propositions are necessary for our results

Definition 2.1. [24] A point xα is a stationary point of a semigroup of operators
{Tt} if and only if

Ttxα = xα ∀ t ≥ 0. (2.1)

Definition 2.2. [24] Let K be a closed convex subset of xα and D ⊆ R+, a
family of maps Tt from K to K is called a semigroup of non-expansive maps if

1 T0 = 1, ∀ t, s ∈ D;
2 Tt+s = TtTs ∀ t, s ∈ D; and
3 ∀ t ∈ D, x, y ∈ K, ‖ Ttx− Tty ‖≤‖ x− y ‖ .

Definition 2.3. [24] If xα is a stationary point of the semigroup, the function
t→‖ Ttx− xα ‖ is non-increasing. That is t ≥ s,

‖ Ttx− xα ‖=‖ Tt−sTsx− Tt−sxα ‖≤‖ Tsx− xα ‖ . (2.2)
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Therefore, if there exists at least one stationary point xα, the function t →‖
Ttx− xα ‖2 has a limit as t → ∞; hence t → Ttx is bounded and thus it has an
asymptotic centre.

Definition 2.4. [23] Let D = [0,+∞), consider a function Q : D × D → D
satisfying the properties

1 ∀ N ∈ D, s→ Q(N, s) is µ-measurable
2 ∀ N ∈ D,

∫
D
Q(N, s)dµ(s) = 1.

If we set

Q(N, t) =
1

N
; when 0 ≤ t ≤ N, 0; when t > N. (2.3)

Assuming t → Ttx is strongly µ-measurable, we define the Cesaro means
σQ(N)x by

σQ(N)x =

∫
D

Q(N, s)Tsxdµ(s). (2.4)

Proposition 2.5. [23] The asymptotic centre of a bounded sequence of elements
an ∈ A belongs to the closed convex hull of its weak cluster points. Moreover, if
the bounded sequence of elements an converges weakly, then the limit coincides
with the asymptotic centre.

Proof. Let an be the asymptotic centre of the bounded sequence of elements an
and b∞ be the projection of a∞ onto the closed convex hull C of the weak cluster
points of the sequence {an}n. It is non-empty because any bounded sequence is
weakly relatively compact. There exists a subsequence of elements an,such that
φ(b∞) = limn′→∞ ‖ an′ − b∞ ‖2. Hence

lim
n′→∞

sup ‖ an′ − a∞ ‖2≤ φ(x∞). (2.5)

Also there exists a subsequence of elements an′′ that converges to some z ∈ C.
Therefore

lim
n′′→∞

〈b∞ − a∞, b∞ − an′′〉 = 〈b∞ − a∞, b∞ − z〉 ≤ 0, (2.6)

because b∞ is the projection of a∞ to C. From the identity

‖ an − a∞ ‖2=‖ an − b∞ ‖2 + ‖ b∞ − a∞ ‖2 +2〈an − b∞, b∞ − a∞〉. (2.7)

We deduce that
φ(a∞) ≥ φ(b∞)+ ‖ a∞ − b∞ ‖2≥ φ(b∞), (2.8)

from the uniqueness of the minimum of φ, it follows that a∞ = b∞ ∈ C. The
second part of the proposition is an immediate consequence of the first. �

Proposition 2.6. If all the weak cluster points of Ttx are stationary points, then
Ttx converges weakly to its asymptotic centre as t→∞.

Proof.
M = {y ∈ X : w∗ − lim

t→∞
‖ Ttx− y ‖ exist}, (2.9)

and N denotes the set of stationary points xα of the semigroup; then

‖ Ttx− xα ‖=‖ Tt−sTsx− Tt−sxα ‖≤‖ Tsx− xα ‖, t ≥ s. (2.10)
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Implies that N ⊂M . The result therefore follows from the above proposition.
�

Proposition 2.7. Let T be a non-expansive map from a closed convex subset
K ⊂ A to itself. Assume that a sequence of elements xN ∈ K satisfies the
condition

lim
N→∞

‖ xN − TxN ‖= 0. (2.11)

Then any weak cluster point of this sequence is a fixed point of T .

Proof. Let xα be the weak limit of a generalized subsequence {xN ′}N ′ of the
sequence {xN}N and let us set xλ = (1− λ)xα + λTxα where λ ∈ (0, 1]. Since T
is non-expansive, we deduce that

〈xλ − Txλ − (xN ′ − TxN ′), xλ − xN ′〉 ≥ ‖ xλ − xN ′ ‖2 − ‖ Txλ − TxN ′ ‖
‖ xλ − xN ′ ‖≥ 0.

By letting xN ′ → xα, we deduce from the inequality

〈xλ − Txλ, xλ − xα〉 ≥ 0. (2.12)

that xN ′ → TxN ′ strongly. This latter inequality can be written, after division
by λ > 0,

〈(1− λ)xα + λTxα − T [(1− λ)xα + λTxα], Txα − xα〉 ≥ 0. (2.13)

By letting λ → 0, we deduce that ‖ Txα − xα ‖2≤ 0 ,which implies that
xα = Txα. �

Lemma 2.8. Assume that there exists at least one stationary point of the QDS
{Tt} and that

t ≥ 0, lim
N→∞

‖ σQ(N)x− TtσQ(N)x ‖= 0. (2.14)

when N → ∞ ,σQ(N)x converges weakly to the asymptotic centre of t → Ttx,
which is a stationary point of the QDS.

Proof. Set yN = σQ(N)x, proposition 2.6 implies that all the weak cluster points
of the sequence {yN} are stationary points of the semigroup; these weak cluster
points belong to the subset

K = {y ∈ A : lim
t→∞
‖ Ttx− y ‖ exist}. (2.15)

�

Lemma 2.9. [24] Set yN = σQ(N)x. Then

‖ TtyN − yN ‖2≤
∫
D∩[0,t]

Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ Tsx− yN ‖2 dµ(s).
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Proof. Since Tt+sx− Tty ‖≤‖ Tsx− y ‖,we deduce that

0 ≤ ‖ Tsx− Tty + Tty − y ‖2 − ‖ Tt+sx− Tty ‖2

+ ‖ Tsx− Tty ‖2 + ‖ Tty − y ‖2 − ‖ Tt+sx− Tty ‖2

+ 2〈Tsx− Tty, Tty − y〉.

If we take y = yN , the above inequality becomes

‖ TtyN − yN ‖2≤
∫
D

Q(N, s)(‖ Tsx− TtyN ‖2 − ‖ Tt+sx− TtyN ‖2)dµ(s) (2.16)

Since,∫
D

Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s) =

∫
D∩[0,t]

Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

Q(N, s+ t) ‖ Tt+sx− TtyN ‖2 dµ(s).

The above inequality can be rewritten as

‖ TtyN − yN ‖2≤
∫
D∩[0,t]

‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

|Q(N, s)−Q(N, s+ t)| ‖ Tt+sx− TtyN ‖2 dµ(s).

We estimate the last integral by using

‖ Tt+sx− Tty ‖2≤‖ Tsx− yN ‖2 . (2.17)

�

Lemma 2.10. [14] If S : X → X is affine and nonexpansive in the sense that
‖ Sx− Sy ‖≤‖ x− y ‖ such that X is a Banach space, and if

Anx =
1

n
Snx (2.18)

then {An} converges pointwise on X.

3. Main Results

Here, we want to establish the weak convergence of Cesaro means

1

N

∫ N

0

Ttx
∗xdt. (3.1)

Definition 3.1. Let N(T ) be a closed convex subset of xα and D ⊆ R+, a family
of maps Tt from N(T ) to N(T ) is called a semigroup of non-expansive maps if

1 T0 = 1, ∀ t, s ∈ D;
2 Tt+s = TtTs ∀ t, s ∈ D, and
3 ∀ t ∈ D, x, y ∈ N(T ), ‖ Ttx − Tty ‖≤‖ x − y ‖ and x∗, y∗ ∈ N(T )

,‖ Ttx∗ − Tty∗ ‖≤‖ x∗ − y∗ ‖ .
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Lemma 3.2. Set y∗NyN = σQ(N)x∗x. Then

‖ Tty∗NyN − y∗NyN ‖2≤
∫
D∩[0,t]

‖ y∗N ‖2 Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ y∗N ‖2‖ Tsx− yN ‖2 dµ(s).

Proof.
‖ Tty∗NyN − y∗NyN ‖2≤‖ y∗N ‖2‖ TtyN − yN ‖2 . (3.2)

Since,

‖ TtyN − yN ‖2≤
∫
D∩[0,t]

Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ Tsx− yN ‖2 dµ(s).

So, we have

‖ Tty∗NyN − y∗NyN ‖2≤
∫
D∩[0,t]

‖ y∗N ‖2 Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ y∗N ‖2‖ Tsx− yN ‖2 dµ(s)

�

Theorem 3.3. Let Tt : N(T ) → N(T ) be µ-measurable Quantum dynamical
semigroup of non-expansive maps which has at least one stationary point. Let Q
be any function D ×D to R+, measurable with respect to the second variable of
bounded variation, satisfying

1 ∀ N > 0,
∫
D
Q(N, s)dµ(s) = 1;

2 ∀ t ∈ D, limN→∞
∫
N∩[0,t]Q(N, s)dµ(s) = 0; and

3 ∀ t ∈ D, limN→D
∫
D
|Q(N, s+ t)−Q(N, s)|dµ(s) = 0,

Then the averages σQx
∗x converges weakly to the asymptotic centre of t→ Ttx

∗x
which is a stationary point of the semigroup, as N →∞.

Proof. We have to check that

∀ t ≥ 0, ‖ Tty∗NyN − y∗NyN ‖2= 0 (3.3)

We will use the above lemma (1) to prove this. Observe that if xα ∈ K is a
stationary point of the semigroup, we can estimate

‖ Tsy − z ‖=‖ Tsy − Tsxα + xα − z ‖ . (3.4)

It can be solved further by

‖ Tsy − Tsxα + xα − z ‖≤ ‖ Tsy − Tsxα ‖ + ‖ xα − z ‖
=‖ Tsxα − Tsy ‖ + ‖ xα − z ‖≤‖ xα − y ‖ + ‖ xα − z ‖ .

We also observe that

‖ xα − yN ‖=‖
∫
D

Q(N, s)(Tsxα − Tsx)dµ(s) ‖≤‖ xα − x ‖ . (3.5)
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By taking y = x and z = TtyN , we deduce that

‖ Tsx− TtyN ‖≤ ‖ xα − x ‖ + ‖ xα − TtyN ‖
≤‖ xα − x ‖ + ‖ xα − yN ‖
≤‖ xα − x ‖ + ‖ xα − x ‖
≤ 2 ‖ xα − x ‖ .

And by taking y = x and z = yN , we also deduce that

‖ Tsx− yN ‖≤ ‖ xα − x ‖ + ‖ xα − yN ‖
≤‖ xα − x ‖ + ‖ xα − x ‖
≤ 2 ‖ xα − x ‖ .

Hence, by Lemma 2.8,

‖ Tty∗NyN − y∗NyN ‖2≤
∫
D∩[0,t]

‖ y∗N ‖2 Q(N, s) ‖ Tsx− TtyN ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ y∗N ‖2‖ Tsx− yN ‖2 dµ(s).

By substituting the above inequalities,we have

‖ Tty∗NyN − y∗NyN ‖2≤
∫
D∩[0,t]

‖ y∗N ‖2 Q(N, s)4 ‖ xα − x ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ y∗N ‖2 4 ‖ xα − x ‖2 dµ(s).

By taking y∗N = y∗ and y∗ = x∗ , we have

‖ Tty∗NyN − y∗NyN ‖2≤
∫
D∩[0,t]

‖ x∗ ‖2 Q(N, s)4 ‖ xα − x ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)| ‖ x∗ ‖2 4 ‖ xα − x ‖2 dµ(s)

≤
∫
D∩[0,t]

Q(N, s)4 ‖ x∗xα − x∗x ‖2 dµ(s)

+

∫
D

|Q(N, s+ t)−Q(N, s)|4 ‖ x∗xα − x∗x ‖2 dµ(s).

�

The right-hand side of the inequality converges as N →∞ by assumptions (2)
and (3) of Theorem 3.3

Corollary 3.4. Let Tt : N(T ) → N(T ) be a quantum dynamical semigroup of
non-expansive maps which has at least one stationary point. If the semigroup T
is measurable, then

x ∈ N(T ),
1

N

∫ N

0

Tτx
∗xdτ

converges weakly to a stationary point.
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Example 3.5. Gievn B to be a closed convex subset of a decoherence-free sub-
algebra N(T ) whose dual has Frechet differentiable norm, and let S : B → B be
nonexpansive. Then limTtx∗x exists for each x ∈ B. If we let 0 ∈ B, without loss
of generality. Since 0 ∈ B is a contraction of B, the map x∗x → (1 − r)−1Sx∗x
has a fixed point (y∗y)r ∈ B, for r > 0. By the triangle inequality,

‖ (y∗y)r − x∗x ‖ − ‖ (y∗y)r − Sx∗x ‖≥ d− 2r ‖ Sx∗x ‖ (x ∈ B) (3.6)

where d = inf ‖ Sx∗x− x∗x ‖. If we apply this repeatedly,we have

‖ (y∗y)r ‖ − ‖ (y∗y)r − Sn0 ‖≥ nd− 2r(‖ S0 ‖ +−−−+ ‖ Sn0 ‖) (3.7)

Pick (y∗y)∗r ∈ N(T )∗ with ‖ (y∗y)∗r ‖= 1 and 〈(y∗y)r, (y
∗y)∗r〉 =‖ (y∗y)r ‖. Then

〈Sn0, (y∗y)∗r〉 dominates the left side of 2.18. Letting r → 0, the Banach-Alaoglu
theorem furnishes a (y∗y)∗ ∈ N(T )∗ with ‖ (y∗y)∗ ‖= 1 and 〈Tt0, (y∗y)∗〉 ≥ d. It
is easy to verify that ς = lim sup ‖ Ttx∗x ‖ is independent of x∗x and that ς ≤ d.
Thus, we conclude that for all x ∈ B,

lim〈Ttx∗x, (y∗y)∗〉 = lim ‖ Ttx∗x ‖ . (3.8)

Hence, Ttx
∗x converges.

4. Conclusion

From the results, we were able to conclude that the measurability of a quantum
dynamical semigroup of non-expansive maps which has at least one stationary
point will ensure the weak convergence of the Cesaro means to a stationary point.
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