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ON ZAGREB COINDEX POLYNOMIALS FOR SOME SPECIAL
GRAPHS

ALIYU IBRAHIM KIRI AND ALIYU SULEIMAN ∗

Abstract. Zagreb polynomial is a polynomial in which the power of the in-
determinate is a Zagreb index, Zagreb index is a graph invariant as it remains
fixed under graph homomorphism. The complement of a graph is needed to
compute the Zagreb coindex as well as the polynomial. In this paper we looked
at the size of the complement graphs under consideration and the formulae for
their Zagreb coindex polynomials.The graphs are cycle Cn, wheel Wn, path
Pn, complete graph Kn and the complete bipartite graph Km,n.

1. Introduction

Topological indicies are values obtained from graphs, they are also called graph
invariants as they remain fixed under graph homomorphism [5] and as stated in
[9] the significance of topological indicies lies in their ability to transform complex
molecular structures into numerical representations which is done via the use of
graphs and this helps in building computational models used in different fields
like drug discovery, material science and reaction chemistry. Graph Γ(V,E) [3] is
an ordered pair consisting of set of vertices V and set of edges E with elements
of E linking elements of V. The order of Γ is given by the cardinality of V while
the size is given by E.

A lot of topological indices have been developed either from chemistry or math-
ematical perspective, just like the first and second Zagreb indices introduced by
Gutman and Trinajstic [4] in 1972 which they defined interms of the degree of
vertices of a graph. The degree of a vertex v denoted as dv is the number of edges
incident with v [2], i.e the number of edges linking v with other vertices in the
graph. The two Zagreb indices are defined as follows; the first

M1(Γ) =
∑

v∈V (Γ)

(dv)
2 (1.1)
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and the second is define as

M2(Γ) =
∑

uv∈E(Γ)

du . dv (1.2)

Parvez [7] later showed that the first Zagreb index is also written as

M1(Γ) =
∑

uv∈E(Γ)

[du + dv] (1.3)

and that the redefined third Zagreb index is computed using

ReZG3(Γ) =
∑

uv∈E(Γ)

[du . dv][du + dv] . (1.4)

There is the Wiener’s index [8] which is defined as

W (Γ) =
1

2

∑
{u,v}⊆V (Γ)

d(u, v) , (1.5)

it is defined in terms of the distance between two vertices u and v which we
denote as d(u, v), where distance in this case refers to the number of few edges
between the vertices [2], the distance is by taking the shortest path between the
two vertices. The distance between vertices is also used in getting the eccentricity
of a vertex. The eccentricity [1] of a vertex v (ecc(v)) is the maximum distance
between v and a vertex farthest away from it.

There are polynomials associated with topological indices, these are polynomi-
als whose coefficient and power of the indeterminate are topological indices. As
can be seen in; the first and second Zagreb polynomials [11] below

M1(Γ;x) =
∑

uv∈E(Γ)

xdu+dv (1.6)

and

M2(Γ;x) =
∑

uv∈E(Γ)

xdu . dv . (1.7)

The Wiener’s polynomial [8] is obtained using

W (Γ;x) =
1

2

∑
{u,v}⊆V (Γ)

xd(u,v) (1.8)

while the eccentric connectivity polynomial [6] is given as

ECP (Γ;x) =
∑

v∈V (Γ)

dvx
ecc(v) . (1.9)

2. Result

Doslic [12] introduced the Zagreb Coindices of a graph, the first Zagreb coindex
is defined as

M̄1(Γ) =
∑

uv/∈E(Γ)

[du + dv] (2.1)
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while the second Zagreb coindex is defined as

M̄2(Γ) =
∑

uv/∈E(Γ)

[du . dv] (2.2)

with u and v distinct. To get the coindex of a graph Γ we need the complements
of the graph (Γ̄) in question. We got motivated by Equations 1.6 to 1.9 as
such we define the first and second Zagreb coindex polynomials. In this paper
we considered the cycle graph Cn, wheel Wn, path Pn, complete graph Kn and
complete bipartite graph Km,n.

Definition 2.1. First Zagreb coindex polynomial of a graph Γ is a polynomial
whose degree of the indeterminate x is the sum of the degrees of pair of adjacent
vertices (u, v) found in the complement of Γ; and this is written as;

M̄1(Γ;x) =
∑

uv/∈E(Γ)

x[du + dv ] (2.3)

Definition 2.2. Second Zagreb coindex polynomial of a graph Γ is a polynomial
whose degree of the indeterminate x is the product of the degrees of pair of
adjacent vertices (u, v) found in the complement of Γ; and this is written as;

M̄2(Γ;x) =
∑

uv/∈E(Γ)

x[du . dv ] (2.4)

2.1. Coindex Polynomials for cycle graph Cn.

Remark 2.3. For every vertex vi ∈ V (Cn) dvi = 2 [3].

The proposition below gives the size of the complement of Cn.

Proposition 2.4. The size of the complement graph of a cycle is given by |E(C̄n)| =
n(n−3)

2
.

Proof. The degree of vertices of a complement of a graph is with respect to the
old graph [13], so dvi = 2, ∀ vi ∈ Cn as seen in Remark 2.3. Making vi adjacent
to (n − 3) vertices in C̄n leading to (n − 3) edges between a vertex vi and (n −
3) vertices. Applying the hand shaking lemma [2] on all the n vertices gives

|E(C̄n)| = n(n−3)
2

. �

Lemma 2.5. The first Zagreb coindex for a cycle Cn is given by the expression
2n(n− 3).

Proof. From Equation 2.1 it is clear that the defining sum runs over the edge of
the complement of the graph in question (Cn) but the degree of the vertices is
with respect to the old graph [13], as such dvi = 2 as seen in Remarks 2.3 making
vi to be adjacent to (n − 3) vertices in C̄n. So applying handshaking lemma [2]

gives |E(C̄n)| = n(n−3)
2

.

⇒ M̄1(Cn) =
∑

uv/∈E(Cn)

[du + dv] =
n(n− 3)

2
× 4 = 2n(n− 3).

�
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Theorem 2.6. The first Zagreb coindex polynomial for a cycle Cn is a monomial

of the form n(n−3)
2

x4.

Proof. From the formula for computing the first Zagreb coindex polynomial the
power is gotten by adding the degrees of pair of adjacent vertices . This implies
that the coefficient is the size of the graph Cn. �

Since all vertices of Cn are of equal degrees note that

M̄1(Cn) =
∑

uv/∈E(Cn)

[du + dv] =
∑

uv/∈E(Cn)

[du . dv] = M̄2(Γ)

which means their Zagreb coindex polynomials are the same.

2.2. Coindex Polynomials for wheel graph Wn. Note that a wheel is derived
from a cycle Cn−1 by adding a single vertex K1 [2] in such a way that the added
vertex is adjacent to all the n− 1 vertices; Wn = Cn−1 +K1. The size of a wheel
is given by 2(n− 1) [3] and the order is n.

Remark 2.7. The degree of each vi ∈ V (Cn−1) is 3 while that of K1 is (n− 1) [3].

Proposition 2.8. The Zagreb coindex of a wheel graph Wn is equivalent to the
coindex of a cycle graph Cn−1 which leads to the wheel graph.

Proof. To get the coindex of a graph Γ we need to get the degree sum of vertices
forming an edge in the compliment of (Γ̄), i.e vertices not adjacent in Γ. So in
this case it suffices to show that the size of C̄n−1 equals the size of W̄n.
Observe that the added vertex K1 in Wn is adjacent to all vertices as such not
adjacent to any vertex in W̄n leaving only vertices of Cn−1 adjacent in the com-
pliment which indicates size of W̄n = C̄n−1. �

Note that the coindex polynomials for C̄n−1 and W̄n are equal.

2.3. Coindex Polynomials for graph Pn. The order of a path graph Pn is n
while the size is (n− 1) [1].

Remark 2.9. In Pn there are 2 edges linking end vertices each of degree 1 to
vertices of degree 2 while the remaining (n − 3) edges link vertices of degrees 2
[1].

For the coindex of a path graph we need to get the size of the complement
graph of a path graph, the proposition below gives the size.

Proposition 2.10. For a path Pn(n > 2) the size of the complement graph

|E(P̄n)| = (n−1)(n−2)
2

.

Proof. The two end vertices are of degree 1 so each is adjacent to (n− 2) vertices
in P̄n leading to (n−2) edges while the remaining (n−2) vertices each is adjacent
to (n − 3) in P̄n leading to (n − 3) edges. So adding all the edges and applying
the hand shaking lemma will give;

|E(P̄n)| = 2(n−2)+(n−2)(n−3)
2

= (n−2)(n−1)
2

. �
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Example 2.11. Given a path graph P5 with vertex set V = {a, b, c, d, e} and
edge set {e1, e2, e3, e4} where e1 = {a, b} , e2 = {b, c} , e3 = {c, d} and e4 = {d, e}.
Clearly a is not adjacent to vertices {c, d, e}, b is not adjacent to vertices {d, e}
and c is not adjacent to vertex e. The non-adjacent vertices will now be adjacent
in the complement. So the complement P̄5 is of size 6 with the following edges
e1 = {a, c}, e2 = {a, d}, e3 = {a, e}, e4 = {b, d}, e5 = {b, e}, e6 = {c, e}.

The number of edges (size) can be confirmed using Proposition 2.10 as shown
below
|E(P̄5)| = (n−2)(n−1)

2
= (5−2)(5−1)

2
= 12

2
= 6.

Lemma 2.12. The first Zagreb coindex for a path graph is given by 2n2−8n+ 8.

Proof. The end vertices v1 and vn of a path graph Pn are each of degree 1 and the
two will now be adjacent in P̄n linked by a single edge. And each vertex will be
adjacent to (n− 2) vertices in the new graph (i.e excluding itself and the vertex
adjacent to it in Pn) meaning there are 2(n− 2) edges between v1, vn and other
vertices leading to

2(n− 2)− 1 = (2n− 5) edges (1)

since the edge linking the end-vertices was counted twice. For the remaining
(n− 2) vertices which are all of degree 2 the number of edges between them will
be

|E(P̄n)| − (2n− 5) =
(n− 1)(n− 2)

2
− (2n− 5) =

n2 − 7n + 12

2
edges (2)

Note that pairing two vertices each of degree 2 gives the sum of degrees as 4 and
3 if one is an end vertex, while for the single edge connecting the end vertices we
get sum of degree as 2. So applying (1) and (2) to Equation 2.1 will produce

M̄1(Pn) =
∑

uv/∈E(Pn)

[du + dv] = 3(2n− 6) + 2× 1 + 4
(n2 − 7n + 12)

2
= 2n2− 8n+ 8.

�

Theorem 2.13. The first Zagreb coindex polynomial for a path is given by x2 +
(2n− 6)x3 + n2−7n+12

2
x4.

Proof. The polynomial has coefficients as the number of edges linking vertices
that gives a particular sum of degrees, as shown in proof of Lemma 2.12 a single
edge link vertices whose degree sum is 2, (2n− 6) edges link vertices whose sum

of degrees is 3 and n2−7n+12
2

edges link vertices with degree sum as 4. We then
use Equation 2.3 to get the polynomial

M̄1(Pn;x) =
∑

uv/∈E(Pn)

x[du + dv ] = x2 + (2n− 6)x3 +
n2 − 7n + 12

2
x4.

�

Lemma 2.14. The second Zagreb coindex for a path graph Pn is
2n2 − 10n + 13.
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Proof. To get the second Zagreb coindex we need the product of degree of vertices
making an edge in P̄n, recall from the proof of Lemma 2.12 that we have 1 common
edge between v1 and vn which gives product of degrees as 1, we have (2n − 6)
edges linking an end-vertex and other vertices leading to a product of degrees as
2 and the remaining n2−7n+12

2
edges each has vertices whose product of degrees is

4. We then apply Equation 2.2

M̄2(Pn) =
∑

uv/∈E(Pn)

[du . dv] = 1 + 2(2n− 6) +
n2 − 7n + 12

2
× 4

= 1 + 2(2n− 6) + 2(n2 − 7n + 12) = 2n2 − 10n + 13.

�

Theorem 2.15. The second Zagreb polynomial for a path graph is given by x +
(2n− 6)x2 + (n2 − 7n + 12)x4.

Proof. The power of the indeterminate is the product of the degree of pair of
vertices; from the proof of Lemma 2.14 we could see that there is a single edge in
P̄n which comprises of end vertices resulting into product of degree as 1, (2n− 6)
edges comprising of pair of vertices of degrees 2 and 1 which leads to a product
of their degrees as 2 and n2−7n+12

2
edges which link vertices of degree 2 giving the

product of each pair as 4. Noting that the coefficients of the indeterminate are
the number of edges connecting vertices of respective degrees. �

2.4. Coindex Polynomials for Complete Graph Kn. A complete graph Kn

is of order n and size n(n−1)
2

[1].

Remark 2.16. All vertices of a complete graph are adjacent to each other, so
∀ vi ∈ V (Kn) the d(vi) = (n− 1) [3].

Lemma 2.17. The Zagreb coindex of a complete graph is 0.

Proof. It is obvious as V (K̄n) = ∅. �

2.5. Coindex Polynomials for a complete Bipartite Graph Km,n. A com-
plete bipartite graph Km,n is a graph whose vertex set is partitioned into two.
The order of a complete bipartite graph is given by m+n and the size by mn [1].

Remark 2.18. The vertex set of a complete bipartite graph is partitioned into two
sets say A and B with |A| = m and |B| = n, so for vi ∈ A and vj ∈ B we have
d(vi) = n , d(vj) = m [10].

For the coindex Zagreb polynomials of a complete bipartite graph we need to
look at how the complement of the graph will be.

Proposition 2.19. The complement of a complete bipartite graph is a union of
two complete graphs.

Proof. Given a complete bipartite graph Km,n with partitions say A and B with
|A| = m, |B| = n. Since the elements of partition A are not adjacent to each
other, same vertices will now be adjacent in K̄m,n leading to a complete graph
Km just as elements of B will lead to Kn. This implies that K̄m,n = Km∪Kn. �
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Theorem 2.20. The first coindex Zagreb polynomial for a complete bipartite

graph is given by m(m−1)
2

x2n + n(n−1
2

x2m.

Proof. The degree of vertex in partition A is n while that of a vertex in partition
B is m as seen in Remark 2.18, the sum of degrees of adjacent vertices in the
complement of Km,n will be 2n for vertices in Km and 2m for vertices in Kn.
Taking the sum over all the edges of the new graph has to do with edges of each
complete graph separately. We now apply Equation 2.3

M̄1(Km,n;x) =
∑

uv/∈E(Km,n)

x[du + dv ]

= x2n × |E|km + x2m × |E|kn =
m(m− 1)

2
x2n +

n(n− 1)

2
x2m.

�

Note that if m = n, M̄1(Km,n;x) = m(m− 1)x2m.

Theorem 2.21. The second Zagreb coindex polynomial for a complete graph is

given by m(m−1)
2

xn2
+ n(n−1

2
xm2

.

Proof. The proof is obtained in a similar way to that of Theorem 2.20 but with
the product of degree of vertices as du . dv = n2 for vertices in partition A and
du . dv = m2 for partition B. �

Note: if m = n, M̄2(Km,n;x) = m(m− 1)xm2
.

3. Conclusion

In this paper we studied the compliment of special graphs like the cycle graph
Cn, wheel Wn, path Pn, complete graph Kn and the complete bipartite graph
km,n and proposed a formula for computing the size of the compliment of a cycle
graph (|E(C̄n)|) and path graph (|E(P̄n)|). For a complete bipartite graph it
is shown that the compliment is a union of two complete graphs, formulae for
obtaining the Zagreb coindex polynomials for the graphs under consideration are
also given.
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