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HYERS-ULAM-RASSIAS STABILITY OF CERTAIN
PERTURBED NONLINEAR LIENARD TYPE OF SECOND

ORDER DIFFERENTIAL EQUATIONS

ILESANMI FAKUNLE∗, PETER OLUTOLA ARAWOMO, BANKOLE VINCENT
AKINREMI, MATHEW FOLORUNSO AKINMUYISE, AND ISAAC OLABISI ADISA

Abstract. In this paper the Hyers-Ulam-Rassias stability of certain per-
turbed nonlinear second order differential equations of Lienard type was stud-
ied, using some new modifications of Grownwall-Bellman-Bihari Integral in-
equality. Some examples are given to illustrate our results.

1. Introduction

There have been few investigations on the Hyers-Ulam-Rassias stability of non-
linear first order differential equations in the literature, see for instance Qarawani[16],
Rus[17]. The stability problem of functional equation started with the question
concerning stability of group homomorphism proposed by Ulam [21] in 1940 dur-
ing a talk before a Mathematical Colloquium at the University of Wincosin,
Madison. In 1941, Hyers [10] gave a solution of Ulam’s problem for the case
of approximate additive mappings in the context of Banach spaces. The result
obtained by Hyers opened up research in Hyers-Ulam stability. Rassias [18] in
1978 generalised the theorem of Hyers stability to Hyers-Ulam-Rassias stability.

However, the study on the Hyers-Ulam-Rassias stability of a perturbed non-
linear second order Lienard equation is yet to be considered and this is our ma-
jor concern in this paper. The following authors employed different approach
to study the properties of solutions to a generalised Lineard equation: Kroop-
nick [12, 13] studied properties of solutions to a generalised Lienard equations
with forcing term and also the bounded Lp-solutions, Ogundare and Afuwape[15]
studied conditions which guarantee boundedness and stability properties of solu-
tions. Tunc[19, 20] considered new stability and boundedness results for such type
equations with multiple deviating arguments.In addition, Olutimo and Adams [1]
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studied the stability and boundedness of solutions of delay differential equations.
While Bicer and Tunc[2] considered new theorems for Hyers-Ulam stability of
Lienard equation with variable time lags using Banach’s contraction principle.
Further more, the recent publications on the Hyers-Ulam and Hyers-Ulam-Rassias
stability of the second order nonlinear differential equations include:Fakunle[4, 5,
6, 7, 8, 9].

In this paper, we consider Hyers-Ulam-Rassis stability of the following cer-
tain perturbed nonlinear Lienard type differential equations using some newly
modified forms of Gronwall-Bellman-Bihari inequality:

u′′ + Y (t, u(t), u′(t))u′(t) + q(t, u(t)) = P (t, u(t), u′(t)) (1.1)

and its special case

u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t)) = P (t, u(t), u′(t)), (1.2)

with initial conditions

u(t0) = u′(t0) = 0, ∀t ≥ t0 ≥ 1.

Equation (1.1) is considered under the following cases:

i P (t, u(t), u′(t)) 6= Y (t, u(t), u′(t)),
where|Y (t, u(t), u′(t))| ≤ φ(t)g(|u(t)|)h(|u′(t)|)
and P (t, u(t), u′(t)) ≤ α(t)ω(|u(t)||u′(t)|n,

ii P (t, u(t), u′(t)) = Y (t, u(t), u′(t)),
where |P (t, u(t), u′(t))| = |Y (t, u(t), u′(t))|
≤ φ(t)g(|u(t)|)h(|u′(t)|)

and equation (1.2) is also considered under the following cases:

iii P (t, u(t), u′(t)) 6= 0,
iv P (t, u(t), u′(t)) = P (t, u(t)),
v P (t, u(t), u′(t)) = 0,

where c, a, α, φ ∈ C(I,R+), ω, κ, f, h, g ∈ C(R+,R+), for R+ = [t0,∞), I =
(t0,∞),R = (−∞,∞) and Y, P ∈ C(I×R2,R), P (t0, 0, 0) = 0, g(0) = 0, Y (t0, 0, 0) =
0, P (t0, 0) = 0.

2. Preliminaries

Definitions, lemmas and theorems are presented here.

Definition 2.1. The equation (1.1) has the Hyers-Ulam-Rassias stablility for any
positive function ϕ(t), defined as ϕ : I→ R+, if there exist real constant Cϕ > 0
for each solution u(t) ∈ C2(I,R+) of

|u′′ + Y (t, u(t), u′(t))u′(t) + q(t, u(t))− P (t, u(t), u′(t))| ≤ ϕ(t), (2.1)

there exists a solution u0(t) ∈ C2(I,R+) of (1.1) with

|u(t)− u0(t)| ≤ Cϕϕ(t), ∀t ∈ I.
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Definition 2.2. Equation (1.2) is said to be Hyers-Ulam-Rassias stable, if there
exists a constant Cϕ > 0 such that for u(t) ∈ C2(I,R+), satisfying

|u′′ + c(t)f(u(t))u′(t) + a(t)g(u(t))− P (t, u(t), u′(t))| ≤ ϕ(t) (2.2)

∀t ∈ I for a positive function ϕ(t) where ϕ : I → [0,∞), there exists a solution
u0(t) ∈ C2(I,R+) of the equation (1.2), such that

|u(t)− u0(t)| ≤ Cϕϕ(t), ∀t ∈ I,
where Cϕ is called Hyers-Ulam-Rassias constant.

Definition 2.3. [4] A function ω : [0,∞)→ [0,∞) is said to belong to a class Ψ
if

i ω(u) is nondecreasing and continuous for u ≥ 0,
ii ( 1

v
)ω(u) ≤ ω(u

v
) for all u and v ≥ 1,

iii there exists a function φ, continuous on [0,∞) with ω(αu) ≤ φ(α)ω(u)
for α ≥ 0.

Theorem 2.4. [3]Let

i u(t), r(t), h(t) : I→ R+ and be continuous
ii f, ω ∈ Ψ

If

u(t) ≤ K +

∫ t

t0

r(s)f(u(s))ds+

∫ t

t0

h(s)ω(u(s))ds (2.3)

then

u(t) ≤ Ω−1
(

Ω(K) +

∫ t

t0

h(s)ω

(
F−1

(
F (1) +

∫ s

t0

r(δ)dδ

))
ds

)
F−1

(
F (1) +

∫ t

t0

r(s)ds

)
,

(2.4)

where (0, b) ⊂ (0,∞), where

F (u) =

∫ u

u0

ds

ω(s)
, 0 < u0 ≤ u (2.5)

and

Ω(u) =

∫ u

u0

dt

f(t)
, 0 < u0 < u, (2.6)

F−1, Ω−1 are the inverses of F, Ω respectively and t is in the subinterval (0, b) ∈
R+ so that

F (1) +

∫ t

t0

r(s)ds ∈ Dom(F−1)

and (
Ω(K) +

∫ t

t0

h(s)ω

(
F−1

(
F (1) +

∫ s

t0

r(δ)dδ

))
ds

)
∈ Dom(Ω−1).

Theorem 2.5. [3] Let

i u(t), r(t),∈ C(R+,R+)
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ii ω ∈ <
iii n > 0 be monotonic, nondecreasing and continuous on R+

if

u(t) ≤ n(t) +

∫ t

t0

f(s)ω(u(s))ds, t ∈ I, (2.7)

then

u(t) ≤ n(t)Ω−1
(

Ω(1) +

∫ t

t0

f(s)ds

)
, (2.8)

where (0, b) ⊂ (0,∞) and Ω(u) is defined by equation (2.6) and Ω−1 is the inverse
of Ω and t is in the subinterval (0, b)is so chosen that

Ω(1) +

∫ t

t0

f(s)ds ∈ Dom(Ω−1).

Theorem 2.6. [14](Generalised First Mean Value Theorem). If f(t) and g(t)
are continuous in [t0, t] ⊆ I and f(t) does not change sign in the interval, then
there is a point ξ ∈ [t0, t] such that∫ t

t0

g(s)f(s)ds = g(ξ)

∫ t

t0

f(s)ds.

Lemma 2.7. [11] Let r(t) be an integrable function then the n-successive inte-
gration of r over the interval [t0, t] is given by∫ t

t0

. . .

∫ t

t0

dsn =
1

(n− 1)!

∫ t

t0

(t− s)n−1r(s)ds. (2.9)

3. Result

The extensions of the nonlinear Gronwall-Bellman-Bhari inequality are devel-
oped as follow to establish our results.

Theorem 3.1. Let u(t), r(t), h(t) be defined as in Theorem 2.4 and , ω(u), f(u) ∈
C(R+,R+) be nonnegative, monotonic and nondecreasing functions. Further-
more, the function β(t) > 0 be a nondecreasing in t, continuous on R+ and ω(u)
be submultiplicative for u > 0. If

u(t) ≤ β(t) + A

∫ t

t0

r(s)f(u(s))ds+ T

∫ t

t0

h(s)ω(u(s))ds, (3.1)

where K, A and T > 0 holds.
Then,

u(t) ≤ β(t)Ω−1 (V (t))F−1(B(t)), (3.2)

where

V (t) = Ω(1) + T

∫ t

t0

h(s)ω(F−1 (B(s))) ds (3.3)

and

B(t) = F (1) + A

∫ t

t0

r(s)ds, (3.4)
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where F and Ω are defined in equations (2.5) and (2.6) with F−1, Ω−1 as their
inverses respectively, and t is in the subinterval (0, b) ⊂ I so that

B(t) ∈ Dom(F−1)

and
V (t) ∈ Dom(Ω−1).

Proof. Since β(t) is monotonic and nondecreasing on R+, equation (3.1) yields

u(t)

β(t)
≤ 1 + A

∫ t

t0

r(s)f

(
u(s)

β(s)

)
ds+ T

∫ t

t0

h(s)ω

(
u(s)

β(s)

)
ds. (3.5)

It is clear that

α(t) ≤ 1 + A

∫ t

t0

r(s)f(α(s))ds+ T

∫ t

t0

h(s)ω(α(s))ds, (3.6)

where
u(t)

β(t)
= α(t). (3.7)

Use Theorem 2.4 on equation (3.6) to obtain

α(t) ≤ Ω−1 (V (t))F−1 (B(t)) . (3.8)

By applying equation (3.7) we have (3.2). �

Theorem 3.2. Let u(t), r(t), h(t) : I→ R+ be real valued nonnegative continuous
functions and ω(u), f(u), γ(u) be positive, monotonic, nondecreasing continuous
functions on R+ and belong to class Ψ. If γ(u) is submultiplicative for u > 0, the
following inequality

u(t) ≤ K + A

∫ t

t0

r(s)f(u(s))ds+ T

∫ t

t0

h(s)ω(u(s))ds+ L

∫ t

t0

g(s)γ(u(s))ds,

(3.9)

for K,A, T and L > 0 and t ∈ I, then

u(t) ≤ G−1
[
G(K) + L

∫ t

t0

g(s)γ
[
Ω−1

(
V (s)F−1(B(s))

)]
ds

]
Ω−1 (V (t))F−1 (B(t)) ,

(3.10)

where F, Ω, B(t), and V (t) are defined in (2.5), (2.6), (3.4) and (3.3) respec-
tively. The function G is defined as

G(r) =

∫ r

r0

ds

γ(s)
0 < r0 ≤ r, (3.11)

and F−1, Ω−1 and G−1 are the inverses of the functions F, Ω, and G respectively,
then

G(K) + L

∫ t

t0

g(s)γ
[
Ω−1 (V (s))F−1 (B(s))

]
ds ∈ Dom(G−1),

for t is in the subinterval (t0, t1) ⊂ R+

V (t) ∈ Dom(Ω−1),
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for t is in the subinterval (t0, t2) ⊂ R+ and

B(t) ∈ Dom(F−1)

for t is in the subinterval(t0, t3) ⊂ (R+).

Proof. Define

n(t) = K + L

∫ t

t0

g(s)γ(u(s))ds, t ∈ I, (3.12)

then, we re-write (3.9) to get

u(t) ≤ n(t) + A

∫ t

t0

r(s)f(u(s))ds+B

∫ t

t0

h(s)ω(u(s))ds. (3.13)

Let n(t) be monotonic, nondecreasing on C(R+), using Theorem 3.1 to obtain

u(t) ≤ n(t)Ω−1 (V (t))F−1 (B(t)) . (3.14)

Since γ(u) is submultiplicative, it is clear that

d

dt
G(n(t)) ≤ Lg(t)γ

[
Ω−1 (V (t))F−1 (B(t))

]
,

and

G(n(t)) ≤ G(K) + L

∫ t

t0

g(s)γ
[
Ω−1 (V (s))F−1 (B(s))

]
ds.

Hence,

n(t) ≤ G−1
[
G(n(t0)) + L

∫ t

t0

g(s)γ
[
Ω−1 (V (s))F−1 (B(s))

]
ds

]
. (3.15)

Use (3.15) in (3.14) we arrive at the result. �

Theorem 3.3. Suppose that

i u(t), r(t), h(t), g(t) and β(t) ∈ C(R+ be defined as in Theorem 3.2
ii ω(u), f(u), γ(u) be nonnegative, monotonic, nondecreasing continuous func-

tions on R+.
iii γ(u) is submultiplicative for u > 0.

If

u(t) ≤ β(t) + A

∫ t

t0

r(s)f(u(s))ds+ T

∫ t

t0

h(s)ω(u(s))ds+ L

∫ t

t0

g(s)γ(u(s))ds,

(3.16)

for K,A, T and L are positive constants, then

u(t) ≤ β(t)G−1
[
G(K) + L

∫ t

t0

g(s)γ
[
Ω−1 (V (s))F−1 (B(s))

]
ds

]
Ω−1 (V (t))F−1 (B(t)) ,

(3.17)
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where F,Ω, G, V (t) and B(t) are defined in (2.5),(2.6),(3.11),(3.3) and (3.4),
and F−1, Ω−1 and G−1 are the inverses of F, Ω, G, choosing t as in
Theorem 3.1 so that

G(K) + L

∫ t

t0

g(s)γ
[
Ω−1 (V (s))F−1 (B(s))

]
ds ∈ Dom(G−1).

Proof. Since β(t) is monotonic, nondecreasing and nonnegative continuous func-
tion on C(R+), equation(3.16) becomes

u(t)

β(t)
≤ 1 + A

∫ t

t0

r(s)f(
u(s)

β(s)
)ds+ T

∫ t

t0

h(s)ω(
u(s)

β(s)
)ds

+L

∫ t

t0

g(s)γ(
u(s)

β(s)
)ds.

Applying Theorem 3.1 to have

z(t) ≤ G−1
[
G(1) + L

∫ t

t0

g(s)γ
[
Ω−1 (V (s))F−1 (B(s))

]
ds

]
Ω−1 (V (t))F−1 (B(t)) ,

where
u(t)

β(t)
= z(t) to arrive at the result (3.17). �

Now, the Hyers-Ulam-Rassias stability of equation (1.1) is considered by using
case (i).

Theorem 3.4. Let

i |Y (t, u(t), u′(t))| ≤ φ(t)g(|u(t)|)h(|u′(t)|),
ii |P (t, u(t), u′(t))| ≤ α(t)ω(|u(t)||u′(t)|n,

iii |q(t, u(t))| ≤ r(t)κ(|u(t)|),

iv there exist % > 0 such that

∫ t

t0

ϕ(t)dt ≤ %ϕ(t),

v there exists η > 0 such that |u′(t)| ≥ η

vi limt→∞

∫ t

t0

α(s)ds = s1 <∞, s1 > 0,

vii limt→∞

∫ t

t0

r(s)ds = s2 <∞, s2 > 0,

viii limt→∞

∫ t

t0

φ(s)ds = s3 <∞, s1 > 0, ∀t0 ≥ 1,

where r(t), φ(t), α(t) are all nonnegative functions on C(R+) and the functions
g, h, ω, κ are nonnegative, monotonic, nondecreasing on C(R+). Furthermore,
let g, ω, κ belong to class of Ψ and ϕ : I → R+ be an increasing positive func-
tion, then equation (1.1) is Hyers-Ulam-Rassis stable with Hyers-Ulam-Rassias
constant given as

Cϕ1 = %G−1
[
G(1) + s1η

nω
[
Ω−1 (V ∗1 )F−1 (B∗1)

]]
Ω−1 (V ∗1 )F−1 (B∗1) .

(3.18)
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where V ∗1 and B∗1 are constants defined as

V ∗1 = Ω(1) + s2κ
(
F−1 (B∗1)

)
and

B∗1 = F (1) + s3h(η)η,

Proof. From inequality (2.1) with Lemma 2.7 we have

u(t) ≤ t

∫ t

t0

ϕ(s)ds− t
∫ t

t0

Y (s, u(s), u′(s))(u′(s))ds

−t
∫ t

t0

q(s, u(s))ds+ t

∫ t

t0

P (s, u(s), u′(s))ds.

It follows that

|u(t)| ≤
∫ t

t0

ϕ(s)ds+

∫ t

t0

|Y (s, u(s), u′(s))||(u′(s))|ds

+

∫ t

t0

|q(s, u(s))|ds+

∫ t

t0

|P (s, u(s), u′(s))|d, ∀t ≥ t0.

We use conditions (i),(ii), (iii) of Theorem 3.4 to get

|u(t)| ≤
∫ t

t0

ϕ(s)ds+

∫ t

t0

φ(s)g(|u(s)|)h(|u′(s)|)|(u′(s))|ds+

∫ t

t0

r(s)κ(|u(s)|)ds

+

∫ t

t0

α(s)ω(|u(s)||u′(s)|nds,

and condition(iv) to obtain

|u(t)| ≤
∫ t

t0

ϕ(s)ds+ h(η)η

∫ t

t0

φ(s)g(|u(s)|)ds+

∫ t

t0

r(s)κ(|u(s)|)ds

+ηn
∫ t

t0

α(s)ω(|u(s)|ds.

Apply Theorem 3.3 to get

|u(t)| ≤
∫ t

t0

ϕ(s)dsG−1
[
G(1) + ηn

∫ t

t0

α(s)ω
[
Ω−1 (V1(s))F

−1 (B1(s))
]
ds

]
Ω (V1(t))F

−1 (B1(t)) ,

where

V1(t) = Ω(1) +

∫ t

t0

r(s)κ
(
F−1 (B1(s))

)
ds

and

B1(t) = F (1) + h(η)η

∫ t

t0

φ(s)ds.

Using conditions (iv),(vi),(vii) and (viii) to arrive at

|u(t)| ≤ %ϕ(t)G−1
[
G(1) + s1η

nω
[
Ω−1 (V ∗1 )F−1 (B∗1)

]]
Ω−1 (V ∗1 )F−1 (B∗) ,
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where

V ∗1 = Ω(1) + s2κ
(
F−1(B∗1)

)
,

and

B∗1 = F−1 (F (1) + s3h(η)η) .

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕ1ϕ(t),

where

Cϕ1 = %G−1
[
G(1) + s1η

nω
[
Ω−1 (V ∗1 )F−1 (B∗1)

]]
Ω−1 (V ∗1 )F−1 (B∗1) .

�

Example 3.5. Consider the problem

u′′ +
1

t2
u2(t)u′2(t) +

1

t4
u4(t) =

1

t3
u2(t)u′4(t), t ≥ t0,

u(t0) = u′(t0) = 0

and α(t) =
1

t2
, r(t) =

1

t4
, α(t) =

1

t3
. By applying the conditions of Theorem 3.4,

the above problem is Hyers-Ulam-Rassias stable.

We consider the case(ii).

Theorem 3.6. Let all the conditions of Theorem 3.4 remain valid and if

|Y (t, u(t), u′(t))| = |P (t, u(t), u′(t))| ≤ φ(t)g(|u(t)|)h(|u′(t)|)

then, equation (1.1) is Hyers-Ulam-Rassias stable with its initial conditions and
Hyers-Ulam-Rassias constant is given as:

Cϕ2 = %Ω−1 (V ∗2 )F−1 (B∗2) , (3.19)

where the constants V ∗2 and B∗2 are defined as

V ∗2 = Ω(1) + s2(F
−1(B∗2))

and

B∗2 = F (1) + (η + 1)h(η)s3.

Proof. It easy to see from inequality (2.1) together with application of Lemma
2.7 that

|u(t)| ≤
∫ t

t0

ϕ(s)ds+

∫ t

t0

|Y (s, u(s), u′(s))|(|u′(s)|+ 1)ds+

∫ t

t0

|q(s, u(s))|ds, ∀t ≥ t0

and by conditions (i), (iii),(v) of Theorem 3.4, it is clear that

|(u(t)| ≤
∫ t

t0

ϕ(s)ds+ (η + 1)h(η)

∫ t

t0

φ(s)g(|u(s)|)ds+

∫ t

t0

r(s)κ(|u(s)|)ds.

By applying Theorem 3.1 we have

|u(t)| ≤
∫ t

t0

ϕ(s)dsΩ−1 (V2(t))F
−1 (B2(t)) ,
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where

V2(t) = Ω(1) +

∫ t

t0

r(s)κ(F−1(B2(s)))ds

and

B2(t) = F (1) + (η + 1)h(η)

∫ t

t0

φ(s)ds.

We use conditions (iv),(vi), (vii) to arrive at

|u(t)| ≤ %ϕ(t)Ω−1 (V ∗2 )F−1 (B∗2) .

Therefore,
|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕ2ϕ(t),

where Cϕ2 is well defined in (3.19) �

The next theorem is given as

Theorem 3.7. Let all the conditions of Theorem 3.4 remain valid. If

|P (t, u(t), u′(t))| = |Y (t, u(t), u′(t))| ≤ α(t)ω(|u(t)||u′(t)|n,

then equation (1.1) has Hyers-Ulam-Rassias stability with Hyers-Ulam-Rassias
constant given as

Cϕ3 = %Ω−1 (V ∗3 )F−1 (B∗3) , (3.20)

where
V ∗3 = Ω(1) + s2(F

−1(B∗3))

and
B∗3 = F (1) + s1(η + 1)ηn.

Proof. Evaluating inequality (2.1)and applying Lemma 2.7 together with condi-
tions (ii), (iii) and (v) we have

|(u(t)| ≤
∫ t

t0

ϕ(s)ds+ (η + 1)(η)n
∫ t

t0

α(s)ω(|u(s)|)ds+

∫ t

t0

r(s)κ(|u(s)|)ds

Applying Theorem 3.1 we obtain

|u(t)| ≤
∫ t

t0

ϕ(s)dsΩ−1 (V3(t))F
−1 (B3(t)) ,

where

V3(t) = Ω(1) +

∫ t

t0

r(s)κ(F−1(B3(s)))ds

and

B3(t) = F (1) + (η + 1)ηn
∫ t

t0

α(s)ds.

We use conditions (iv), (vii), (iv) to get

|u(t)| ≤ %ϕ(t)Ω−1 (V ∗3 )F−1 (B∗3) ,

where
V ∗3 = Ω(1) + s2(F

−1(B∗3))
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and

B∗3 = F (1) + s1(η + 1)ηn.

Hence,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕ3ϕ(t),

where Cϕ3 is given in (3.20). �

Theorem 3.8. Suppose all the conditions of Theorem 3.4 remain valid. Then
equation

u′′(t) + Y (t, u(t), u′(t))(u′(t)) + q(t, u(t)) = 0, (3.21)

is Hyers-Ulam-Rassis stable with Hyers-Ulam-Rassias constant given as

Cϕ4 = Ω−1 (V ∗4 )F−1 (B∗4) , (3.22)

where

V ∗4 = Ω(1) + s2κ
(
F−1 (B∗4)

)
and

B∗4 = F−1 (F (1) + s3h(η)η) ,

Proof. Simplify inequality (2.1) with the application of Lemma 2.7 and condition
(v) of Theorem 3.4, we obtain

|u(t)| ≤
∫ t

t0

ϕ(s)ds+ h(η)η

∫ t

t0

φ(s)g(|u(s)|)ds+

∫ t

t0

r(s)κ(|u(s)|)ds. (3.23)

By applying Theorem 3.1, we obtain

|u(t)| ≤
∫ t

t0

ϕ(s)dsΩ−1 (V4(t))F
−1 (B4(t)) ,

where

V4(t) = Ω(1) +

∫ t

t0

r(s)κ(F−1(B4(s)))ds

and

B4(t) = F (1) + h(η)η

∫ t

t0

φ(s)ds.

By conditions (vi) and (viii)of Theorem 3.4 we have

|u(t)| ≤ %ϕ(t)Ω−1 (V ∗4 )F−1 (B∗4) ,

where

V ∗4 = Ω(1) + s2κ(F−1(B∗4))

and

B∗4 = F (1) + s3h(η)η.

Therefore,

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕ4ϕ(t),

where Cϕ4 is given in (3.22) �

Finally, we consider Hyers-Ulam-Rassias stability of equation (1.2) which is a
special case of equation (1.1).
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Theorem 3.9. Let a(t) be nondecreasing function on C(R+) then, there exists
a′(t) ≥ 0, δ > 0 such that a(t) > δ. Suppose that

ix limt→∞

∫ t

t0

c(s)ds = b <∞, b > 0,

x G(u(t)) =

∫ u(t)

u(t0)

g(s)ds <∞,

xi let |G(u(t)| ≥ |u(t)|.
Then, equation(1.2) is Hyer-Ulam-Rassias stable with Hyers-Ulam-Rassias con-
stant given as

Cϕ5 = %(η +
η2

2
)Ω−1(V ∗5 )F−1(B∗5), (3.24)

where

V ∗5 = Ω(1) + η(n+1)s1ω
(
F−1(B∗5)

)
and

B∗5 = F (1) + η2b.

Proof. From inequality (2.2) with condition (x)of Theorem 3.9 we obtain

−u′(t)ϕ(t) ≤ u′′(t)u′(t) + c(t)f(u(t))(u′(t))2 + a(t)
d

dt
G(u(t))

−P (t, u(t), u′(t))u′(t) ≤ ϕ(t)u′(t)

By applying conditions (ii), (v) of Theorem 3.4 and (xi) of Theorem 3.9 we obtain

|u(t)| ≤ (2η + η2)

2δ

∫ t

t0

ϕ(s)ds+
η2

δ

∫ t

t0

c(s)f(|u(s)|)ds

+
η(n+1)

δ

∫ t

t0

α(s)ω(|u(s)|)ds

and with the application of Theorem 3.1, we arrive

|u(t)| ≤ (2η + η2)

2δ

∫ t

t0

ϕ(s)dsΩ−1(V5(t))F
−1(B5(s)),

where

V5(t) = Ω(1) +
η(n+1)

δ

∫ t

t0

α(s)ω (B5(s)) ds,

and

B5(t) = F (1) +
η2

δ

∫ t

t0

c(s)ds.

Using conditions (ix) of Theorem 3.9 and (iv),(vi) of Theorem 3.4 to obtain

|u(t)| ≤ %ϕ(t)
(η + η2)

2δ
Ω−1(V ∗5 )F−1(B∗5),

where

V ∗5 = Ω(1) +
η(n+1)s1

δ
ω
(
F−1(B∗5)

)
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and

B∗5 = F (1) +
η2b

δ
.

Hence,
|u(t)− u(t0)| ≤ |u(t)| ≤ Cϕ5ϕ(t),

where

Cϕ5 = %
(η + η2)

2δ
Ω−1(V ∗5 )F−1(B∗5).

�

Example 3.10. Consider the equation

u′′(t) + (t+ 1)−2u2u′ + t4u4 = (t+ 1)−5u2(t)u′4(t), t ≥ t0,

where |P (t, u(t), u′(t))| ≤ (t + 1)−4u2(t)u′4(t) and n = 3, then the nonlinear dif-
ferential equation is Hyers-Ulam-Rassias stable by the conditions of the Theorem
3.9.

Next, we consider equation (1.2) under case (iv).

Theorem 3.11. Let all the conditions of Theorem 3.9 remain valid. Then,
equation

u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))u′(t) = P (t, u(t)) (3.25)

where |P (t, u(t))| ≤ A|u(t)|,
∫ ∞
t0

|u′(s)|ds ≤ ν for ν, η > 0 and P (t, u(t)) ∈ R,

is Hyers-Ulam-Rassias stable with Hyers-Ulam-Rassias constant given by

Cϕ6 =
%(η2 + LA|u(ξ)|+ η)

δ
Ω−1

(
Ω(1) +

bη2)

δ

)
(3.26)

Proof. Simplify inequality (2.2), using conditions (x),(xi) of theorem 3.9 and (v)
of Theorem 3.4 together with hypothesis of Theorem 3.11 and by Theorem 2.6,
there exists ξ ∈ [t0, t] such that

|u(t)| ≤
(η

2

2
+ νA|u(ξ)|+ η)

δ

∫ t

t0

ϕ(s)ds+
η2

δ

∫ t

t0

c(s)f(|u(s)|)ds (3.27)

By applying Theorem 2.5 we obtain

|u(t)| ≤
(η

2

2
+ νA|u(ξ)|+ η)

δ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
η2

δ

∫ t

t0

c(s)ds

)
.

By applying conditions (iv) of Theorem 3.4 and (xi) of Theorem 3.9 to arrive at

|u(t)| ≤
%ϕ(t)(η

2

2
+ νA|u(ξ)|+ η)

δ
Ω−1

(
Ω(1) +

bη2

δ

)
.

Hence,
|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕ6ϕ(t).

Therefore,

Cϕ6 =
%(η2 + νA|u(ξ)|+ η)

δ
Ω−1

(
Ω(1) +

bη2

δ

)
.
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�

Example 3.12. Consider the nonlinear differential equation

u′′(t) + (t+ 1)−2u2u′ + t4u4 = 2u2(t), ∀t ≥ t0,

where c(s) =
1

(t+ 1)2
, f(u(t)) = u2(t), P (t, u(t)) ≤ 2u2(t). Then, the nonlin-

ear differential equation is Hyers-Ulam-Rassias stable by the conditions of the
theorem 3.11

Theorem 3.13. Let all the conditions of Theorem 3.9 remain valid, besides, let
the equation (1.2) becomes

u′′(t) + c(t)f(u(t))u′(t) + a(t)g(u(t))u′(t) = 0, (3.28)

where P (t, u(t), u′(t)) = 0 in equation (1.2), then, equation (3.28) is Hyers-Ulam-
Rassias stable with Hyers-Ulam-Rassias constant given as

Cϕ7 = %(η + η2)Ω−1
(
Ω(1) + bη2

)
. (3.29)

Proof. From inequality (2.2), by conditions (v) of Theorem 3.4 and (ix) of The-
orem 3.9, we have

|u(t)| ≤ (2η + η2)

2δ

∫ t

t0

ϕ(s)dsΩ−1
(

Ω(1) +
η2

δ

∫ t

t0

c(s)ds

)
. (3.30)

By using Theorem 2.2 and applying conditions (x) of theorem 3.9,(v)of Theorem
3.4 to have

|u(t)| ≤ %ϕ(t)(2η + η2)

2δ
Ω−1

(
Ω(1) +

bη2

δ

)
. (3.31)

Therefore,
|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕ7ϕ(t)

where

Cϕ7 =
%(2η + η2)

2δ
Ω−1

(
Ω(1) + bη2

)
�

Example 3.14. Consider the nonlinear differential equation

u′′ + t−2u2u′ + t−4u2 = 0, for ∀t ≥ t0

where c(t) =
1

t2
and f(u) = u2(t). This equation is Hyers-Ulam-Rassias stable by

all the properties of the Theorem 3.13.

Remark 3.15. The results in Theorems 3.4, 3.6, 3.7, 3.8, 3.9, 3.11 are established
by making use of Theorems 3.1,3.2, 3.3. The results here genaralized the results of
many authors who concentrated on Hyers-Ulam and Hyers-Ulam-Rassias stability
of linear differential equations.

4. Conclusion

In this work, the results are exemplified by giving examples at the end of the
proofs of the theorems.
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