
Unilag Journal of Mathematics and Applications,

Volume 2, Issue 1 (2022), Pages 74–89.

ISSN: 2805 3966. URL: http://lagjma.edu.ng

POSITIVE SOLUTIONS FOR A NONLINEAR FRACTIONAL
BOUNDARY VALUE PROBLEM

MOSES B. AKOREDE∗ AND PETER O. ARAWOMO

Abstract. In this paper, we establish the existence of positive solutions to
a nonlinear fractional differential equation with integral boundary conditions.
Our approach is based on the linear operator theory and the application of
Krasnosel’skii fixed-point theorem in a cone. We present two examples to
illustrate the practicability of our main results.

1. Introduction

In recent times, fractional boundary value problems have gained much atten-
tion and importance in the fields of engineering and applied sciences due to the
fact that fractional order models are more realistic and practical. Such fields
include chemical engineering, aerodynamics, electrochemistry, thermodynamics,
fluid mechanics, plasma physics, polymer science, population dynamics and so
forth.
For more details on fractional boundary value problems, we refer the readers to
[1], [2], [4], [5], [7], [8], [11], [12], [13], [14], [16], [17], [18], [22], [24], [27], [28], [29],
[30], [31], [34], [35], [36], [38] and the references cited therein.

Cabada and Wang [11], by means of Guo-Krasnosel’skii fixed point theorem,
investigated the existence of positive solutions to the following boundary value
problem with integral boundary conditions

cDαu(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′′(0) = 0, u(1) = λ

∫ 1

0

u(s)ds,

 (1.1)

where 2 < α < 3, 0 < λ < 2 and cDα is the Caputo fractional derivative. Zhao
et al.[32] applied the Krasnosel’skii fixed-point theorem to obtain the existence
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and nonexistence of positive solutions to the following fractional boundary value
problem

Dαu(t) + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =

∫ 1

0

g(s)u(s)ds,

 (1.2)

where 2 < α ≤ 3, Dα is the standard Riemann-Liouville fractional derivative, h
and f are continuous functions, g ∈ L1(0, 1) and λ is a positive parameter.

Furthermore, Feng et al.[15] studied the existence of positive solutions to the
following integral boundary value problem (BVP for short) of nonlinear fractional
differential equation

Dαx(t) + g(t)f(t, x) = 0, t ∈ (0, 1),

x(0) = 0, x′(1) =

∫ 1

0

h(t)x(t)dt,

 (1.3)

where 1 < α ≤ 2, Dα is the standard Riemann-Liouville fractional derivative,
g ∈ C([0, 1], IR+), h ∈ L1[0, 1] is non-negative and f ∈ C([0, 1] × IR+, IR+).
The fixed point theorem in cones was used to establish the existence of positive
solutions to the BVP (1.3).

Inspired greatly by the works in [11], [15], [32], this paper is designed to study
the existence of positive solutions to the following boundary value problem of
nonlinear fractional differential equation

Dαu(t) + a(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, γu(1) + βu′(1) =

∫ 1

0

p(t)u(t)dt,

 (1.4)

where 1 < α ≤ 2, Dα is the standard Riemann-Liouville fractional derivative,
a ∈ C([0, 1], IR+), p ∈ L1[0, 1] is non-negative, f ∈ C([0, 1]× IR+, IR+) and
γ, β ∈ (0, 1) ⊂ IR+. This paper employs the fixed-point theorem due to Kras-
nosel’skii to establish the existence of positive solutions to the BVP (1.4). For
the case of γ = 0 and β = 1, the BVP (1.4) reduces to the BVP (1.3) which
was studied by Feng et al.[15]. Here, we consider the case γ, β ∈ (0, 1) ⊂ IR+.
Many authors have focused attention on the existence of positive solutions for
singular and non-singular cases of fractional boundary value problem. However,
to the best of our knowledge, no work has been done on the existence of positive
solutions for the BVP (1.4) in the literature. Our approach and methodology are
different from those in [7], [9], [15], [19], [23], [33], [36] and [37].
Throughout this work, the following conditions will be assumed:
C1· f : [0, 1]× IR+ −→ IR+ is continuous.
C2· There exists a constant L > 0 such that

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀ (t, u), (t, v) ∈ [0, 1]× IR+.
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C3· a : (0, 1) −→ IR+ is continuous, a(s) 6≡ 0 on (0, 1) and 0 <

∫ 1

0

a(s)ds <∞.

C4· p : [0, 1] −→ IR+ is continuous with

∫ 1

0

p(s)ds > 0 and

0 < co =
1

µ

∫ 1

0

p(s)sα−1ds < 1, µ ∈ IR+.

The rest of the paper is outlined as follows: In Section 2, some basic definitions
and lemmas are presented. The main existence results are stated and proved in
Section 3. Finally, we give two examples in Section 4 to illustrate the application
of our main results.

2. Preliminaries

In this section, we give some basic definitions and lemmas which will be needed
in the sequel.

Definition 2.1. [6], [20] - The Riemann-Liouville fractional integral of order
α > 0 for a given continuous function f : (0,∞) −→ IR is defined to be

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided the right side is pointwise defined on (0,∞).

Definition 2.2. [6], [20] - The Riemann-Liouville fractional derivative of order
α > 0 for a given continuous function f : (0,∞) −→ IR is defined to be

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds,

n − 1 < α ≤ n, provided the right side is pointwise defined on (0,∞), where
n = [α] + 1 and [α] is the integer part of the number α.

Lemma 2.3. [25] - If u ∈ C(0, 1) ∩ L(0, 1), then

DαIαu(t) = u(t).

Lemma 2.4. [6], [20] - Let α > 0 and u ∈ C(0, 1) ∩ L(0, 1).
Then the unique solution of Dαu(t) = 0 is given by
u(t) = c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n, for ci ∈ IR and i = 1, 2, . . . , n.

Lemma 2.5. [6], [20] - Let α > 0 and u,Dαu ∈ C(0, 1) ∩ L(0, 1). Then

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

for ci ∈ IR and i = 1, 2, . . . , n, n ≥ α

 (2.1)

Lemma 2.6. Let 1 < α ≤ 2, 0 < co < 1, w = β(α− 1) and
µ = [w + γ] > 0. If h ∈ L1[0, 1] is a given function, then the unique
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solution of the BVP

Dαu(t) + h(t) = 0, 0 < t < 1,

u(0) = 0, γu(1) + βu′(1) =

∫ 1

0

p(t)u(t)dt

 (2.2)

is given by

u(t) =

∫ 1

0

G(t, s)h(s)ds,

where
G(t, s) = G1(t, s) +G2(t, s), (2.3)

G1(t, s) =


wtα−1(1− s)α−2 + γtα−1(1− s)α−1 − µ(t− s)α−1

µΓα
, s ≤ t,

wtα−1(1− s)α−2 + γtα−1(1− s)α−1

µΓα
, t ≤ s, (2.4)

and

G2(t, s) =
co

1− co
G1(t, s), 0 < co < 1. (2.5)

Proof. The proof is similar to that of Lemma 2.6 in [3] and so we omit details. �

Lemma 2.7. [3] - The function G1(t, s) defined by (2.4) is continuous
and satisfies the following conditions:

(i) G1(t, s) ≥ 0 for all t, s ∈ [0, 1] and G1(t, s) > 0 for all t, s ∈ (0, 1).

(ii) G1(t, s) ≤ G1(s, s) =
sα−1[w(1− s)α−2 + γ(1− s)α−1]

µΓα
,

for all t, s ∈ [0, 1].
(iii) min

1
4
≤t≤ 3

4

G1(t, s) ≥ m(s) max
0≤t≤1

G1(t, s) = m(s)G1(s, s), for 1
4
≤ t ≤ 3

4
,

s ∈ (0, 1) and 0 < m(s) < 1, where m(s) ∈ C((0, 1), IR+) and

m(s) =


(3
4
)α−1[w(1− s)α−2 + γ(1− s)α−1]− µ(3

4
− s)α−1

sα−1[w(1− s)α−2 + γ(1− s)α−1]
, s ∈ (0, 3

4
],

1

(4s)α−1
, s ∈ [3

4
, 1).

(2.6)

Lemma 2.8. [3] - Suppose 0 < co < 1. Then G2(t, s) defined by (2.5) is
continuous and satisfies the following conditions:

(i) G2(t, s) ≥ 0 for all t, s ∈ [0, 1] and G2(t, s) > 0 for all t, s ∈ (0, 1).

(ii) G2(t, s) ≤ λ0G1(s, s) =
λ0s

α−1[w(1− s)α−2 + γ(1− s)α−1]
µΓα

,

∀ t, s ∈ [0, 1], where λ0 =

(
co

1− co

)
> 0.
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Lemma 2.9. [3] - The Green function G(t, s) defined by (2.3) is continuous and
satisfies the following conditions:

(i) G(t, s) ≥ 0 for all t, s ∈ [0, 1] and G(t, s) > 0 for all t, s ∈ (0, 1).

(ii) G(t, s) ≤ σG1(s, s) =
σsα−1[w(1− s)α−2 + γ(1− s)α−1]

µΓα
, (2.7)

∀ t, s ∈ [0, 1], where σ = (1 + λ0) > 0.
(iii) min

1
4
≤t≤ 3

4

G(t, s) ≥ σm(s)G1(s, s), for 1
4
≤ t ≤ 3

4
, s ∈ (0, 1) and

0 < m(s) < 1.

In view of Lemma 2.6, u ∈ C[0, 1] ∩ L1[0, 1] is said to be the solution of BVP
(1.4) if and only if u satisfies the integral equation

u(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s))ds, (2.8)

where G(t, s) is the Green’s function defined by (2.3).

Let E = C[0, 1] be a Banach space with the maximum norm ‖u‖ = max
0≤t≤1

|u(t)|.
Define a cone K ⊂ E by

K =

{
u ∈ E : u(t) ≥ 0 and min

1
4
≤t≤ 3

4

u(t) ≥ m(s)‖u‖

}
.

Define an integral operator T : K −→ E by

Tu(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s))ds, u ∈ K, (2.9)

=

∫ 1

0

G1(t, s)a(s)f(s, u(s))ds+

∫ 1

0

G2(t, s)a(s)f(s, u(s))ds.

The fixed points of the operator T in the cone K are the positive solutions of the
BVP (1.4). Let the operators A and B be defined as follows:

Au(t) =

∫ 1

0

G1(t, s)a(s)f(s, u(s))ds (2.10)

and

Bu(t) =

∫ 1

0

G2(t, s)a(s)f(s, u(s))ds. (2.11)

Lemma 2.10. Suppose conditions C1, C3 are satisfied and let the operator
T : K −→ E be defined as in (2.9). Then T : K −→ K is completely continuous.

Proof. Obviously, the operator T : K −→ K is continuous since the functions
G, a and f are continuous and nonnegative.
Next, we prove that T maps bounded sets into bounded sets in K :
Let Ω ⊂ K be a bounded set. Then there exists a constant η > 0 such that
‖u‖ ≤ η, for all u ∈ Ω.
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Let L1 = max
0≤t≤1, 0≤u≤L1

|f(t, u(t))|+ 1 and q =

∫ 1

0

G(s, s)a(s)ds.

Then by (2.7) and for each t ∈ [0, 1], we have

|Tu(t)| =

∣∣∣∣∫ 1

0

G(t, s)a(s)f(s, u(s))ds

∣∣∣∣ ,
≤

∫ 1

0

σG1(s, s)a(s)|f(s, u(s))|ds,

≤ σL1

∫ 1

0

G(s, s)a(s)ds,

‖Tu‖ ≤ σL1q.

=⇒ T (Ω) is bounded.
Finally, we show that T maps bounded sets into equicontinuous sets of K :
Let Ω ⊂ K be a bounded set and t1, t2 ∈ [0, 1] with t2 > t1.
Since G(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous.
Thus, for any ε > 0, there exists δ > 0 such that whenever |t2 − t1| < δ, we have

|G(t2, s)−G(t1, s)| <
ε

L1

∫ 1

0
a(s)ds

. Therefore, for any u ∈ Ω, we have

|Tu(t2)− Tu(t1)| =

∣∣∣∣∫ 1

0

[G(t2, s)−G(t1, s)] a(s)f(s, u(s))ds

∣∣∣∣ ,
≤

∫ 1

0

|G(t2, s)−G(t1, s)|a(s)|f(s, u(s))|ds,

≤ L1

∫ 1

0

a(s)ds|G(t2, s)−G(t1, s)| < ε,

=⇒ ‖Tu(t2)− Tu(t1)‖ < ε,

which shows that the family of functions {Tu : u ∈ Ω} is equicontinuous. There-
fore, in view of the Arzela-Ascoli theorem, we conclude that T : K −→ K is
equicontinuous and hence completely continuous. �

We state the following Krasnosel’skii fixed point theorems which are fundamental
to prove the existence of positive solutions for the BVP (1.4).

Theorem 2.11. [1], [26] - Let M be a bounded, closed and convex nonempty
subset of a Banach space (E, ‖ · ‖). Suppose that A and B map M into E such
that

(i) x, y ∈M =⇒ Ax+By ∈M ,
(ii) A is a contraction and
(iii) B is completely continuous.

Then there exists z ∈M with z = Az +Bz.
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Theorem 2.12. [10], [21] - Let E be a Banach Space and K ⊂ E be a cone in
E. Assume Ω1, Ω2 are open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2.
If T : K ∩

(
Ω2\Ω1

)
−→ K is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

is satisfied, then T has a fixed point in K ∩ (Ω2\Ω1).

To apply the Krasnosel’skii fixed-point Theorem 2.11, we need to construct
two mappings: one a contraction and the other completely continuous. Thus we
have the following Lemmas:

Lemma 2.13. Assume conditions C1, C2 and C3 are satisfied. Suppose there

exist constants m > 0, L > 0 such that |a(s)| ≤ m and |G1(s, s)| ≤
ε

mL
, for

0 < ε < 1, t, s ∈ [0, 1]. Then the operator A : K −→ K is a contraction.

Proof. In view of (2.10), we have Au(t) =

∫ 1

0

G1(t, s)a(s)f(s, u(s))ds.

Let u, v ∈ K. Then ∀ t ∈ [0, 1] and 0 < ε < 1, we have

‖Au(t)− Av(t)‖ =

∥∥∥∥∫ 1

0

G1(t, s)a(s)f(s, u(s))ds

−
∫ 1

0

G1(t, s)a(s)f(s, v(s))ds

∥∥∥∥
≤ m

∫ 1

0

|G1(s, s)|ds‖f(s, u(s))− f(s, v(s))‖

≤ m

∫ 1

0

ε

mL
ds‖f(s, u(s))− f(s, v(s))‖

≤ m · ε

mL
· L‖u− v‖

≤ ε‖u− v‖.
Hence A is a contraction. �

Lemma 2.14. Assume conditions C1, C2 and C3 are satisfied.
Suppose there exist constants m > 0, ε > 0 such that |a(s)| ≤ m and

|G2(t1, s)−G2(t2, s)| ≤
ε

mN
, for 0 < ε < 1, t1, t2 ∈ [0, 1] and

N = sup
s∈[0,1]

|f(s, un(s))|, n = 1, 2, . . . .

Then the operator B : K −→ K is compact.

Proof. In view of equation (2.11), we have

Bu(t) =

∫ 1

0

G2(t, s)a(s)f(s, u(s))ds.
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Let {un} be a bounded sequence in K. Then there exists σ∗ > 0
such that ‖un‖ ≤ σ∗. Let yn = Bun, n = 1, 2, . . .
Then ‖yn‖ = ‖Bun‖ ≤ ‖B‖‖un‖ ≤ σ∗‖B‖. Hence {yn} is also bounded.
Next, we show that {yn} is equicontinuous:
Since G2(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous.
Hence given any ε > 0, there exists δ > 0 such that ∀ t1, t2 ∈ [0, 1] and s ∈ [0, 1],
|t1 − t2| < δ.
Then for every n, we have

‖Bun(t1)−Bun(t2)‖ =

∥∥∥∥∫ 1

0

G2(t1, s)a(s)f(s, un(s))ds

−
∫ 1

0

G2(t2, s)a(s)f(s, un(s))ds

∥∥∥∥
≤

∫ 1

0

|G2(t1, s)−G2(t2, s)|ds · |a(s)|‖f(s, un(s)‖

≤ ε

mN
·mN = ε.

=⇒ ‖Bun(t1)−Bun(t2)‖ ≤ ε.

Thus {yn} is equicontinuous and by Ascoli-Arzela’s theorem, {yn} has a uniformly
convergent subsequence. Hence {yn} is relatively compact and so B is compact.

�

3. Main Results

In this section, we established the existence of positive solutions to the BVP
(1.4).

Theorem 3.1. Assume that conditions C1 − C3 are satisfied and let
L1 = max

0≤t≤1
|f(t, u(t))|+ 1, for all u ∈ [0,∞) and σ = (1 + λ0) > 0.

Suppose there exist positive constants k, m and r such that |a(t)| ≤ m and
kL1mσ = r where

k =

∫ 1

0

G1(s, s)ds.

Then the BVP (1.4) has at least one positive solution in K.

Proof. Let Kr = {u ∈ K : ‖u‖ ≤ r}, for r > 0.
Obviously Kr is a bounded, closed and convex subset of the Banach space E.
We shall show that if u, v ∈ Kr, then (Au+Bv) ∈ Kr.
Let u, v ∈ Kr. Then ‖u‖ ≤ r and ‖v‖ ≤ r.
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‖Au+Bv‖ =

∥∥∥∥∫ 1

0

G1(t, s)a(s)f(s, u(s))ds+

∫ 1

0

G2(t, s)a(s)f(s, v(s))ds

∥∥∥∥
≤

∣∣∣∣∫ 1

0

G1(s, s)a(s)f(s, u(s))ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

λ0G1(s, s)a(s)f(s, v(s))ds

∣∣∣∣
≤

∫ 1

0

G1(s, s)|a(s)||f(s, u(s))|ds

+

∫ 1

0

λ0G1(s, s)|a(s)||f(s, v(s))|ds

≤ mL1

∫ 1

0

G1(s, s)ds+mL1

∫ 1

0

λ0G1(s, s)ds

≤ mL1(1 + λ0)

∫ 1

0

G1(s, s)ds

≤ mL1(1 + λ0)k

≤ kL1mσ = r.

Hence (Au+Bv) ∈ Kr.
By Lemma 2.13, the operator A : K −→ K is a contraction and Lemma 2.14
implies that operator B : K −→ K is compact. Thus, all the hypotheses of
Krasnosel’skii fixed-point Theorem 2.11 are satisfied and so there exists u ∈ Kr

such that u = Au+Bu. This fixed point is the positive solution to the BVP (1.4)
and the proof is completed. �

Theorem 3.2. Assume that conditions C1, C3 and C4 are satisfied and let

L =

(∫ 1

0

G1(s, s)a(s)ds

)−1
> 0 and M =

(
σ

∫ 3
4

1
4

m(s)G1(s, s)a(s)ds

)−1
> 0.

Suppose there exist constants r∗ > 0 and R > 0 with R > r∗ such that the
following hypotheses hold:

(i) f(t, u) ≤ LR, for (t, u) ∈ [0, 1]× [0, R],
(ii) f(t, u) ≥Mr∗, for (t, u) ∈ [1

4
, 3
4
]× (0, r∗].

Then, the BVP (1.4) has at least one positive solution.



LAGJMA-2022/01 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 83

Proof. Let u ∈ K and t ∈ [0, 1] with ‖u‖ = R. Then by hypothesis (i) and for
0 ≤ u ≤ R, we have

|Tu(t)| =

∣∣∣∣∫ 1

0

G(t, s)a(s)f(s, u(s))ds

∣∣∣∣ ,
≤

∫ 1

0

G1(s, s)a(s)LRds,

≤ L

∫ 1

0

G1(s, s)a(s) ·Rds,

≤ R = ‖u‖,

=⇒ ‖Tu‖ ≤ ‖u‖.

Setting Ω1 = {u ∈ K : ‖u‖ < R}, then we have

‖Tu(t)‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω1.

On the other hand, let u ∈ K with ‖u‖ = r∗. Then by hypothesis (ii) and for any
t ∈ [1

4
, 3
4
], we have

|Tu(t)| =

∣∣∣∣∫ 1

0

G(t, s)a(s)f(s, u(s))ds

∣∣∣∣ ,
≥ σ

∫ 1

0

m(s)G1(s, s)a(s)f(s, u(s))ds,

≥ σ

∫ 3
4

1
4

m(s)G1(s, s)a(s)Mr∗ds,

≥ σM

∫ 3
4

1
4

m(s)G1(s, s)a(s) · r∗ds,

≥ r∗ = ‖u‖,

=⇒ ‖Tu‖ ≥ ‖u‖.

Setting Ω2 = {u ∈ K : ‖u‖ < r∗}, then we have

‖Tu‖ ≥ ‖u‖, for u ∈ K ∩ ∂Ω2.

In view of part (i) of Theorem 2.12, we conclude that the BVP (1.4) has one
positive solution in K ∩ (Ω2\Ω1). �
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4. Example

1. Consider the nonlinear boundary value problem:

D
3
2u(t) +

(t+ 1)

30

[
340e−tu

(7 + et)(1 + u)

]
= 0, t ∈ (0, 1),

u(0) = 0,
3

16
u(1) +

5

8
u′(1) =

∫ 1

0

3t

20
· u(t)dt.

 (4.1)

Here, α =
3

2
, γ =

3

16
, β =

5

8
, a(t) =

(t+ 1)

30
and p(t) =

3t

20
.

Now, condition C3 holds since a(t) is continuous with a(t) 6≡ 0 on [0, 1] and

0 <

∫ 1

0

a(s)ds <∞. Let u ∈ [0,∞) and t ∈ [0, 1].

Then f(t, u) =

[
340e−tu

(7 + et)(1 + u)

]
is continuous and condition C1 holds.

Also, |f(t, u)− f(t, v)| = 340e−t

(7 + et)

∣∣∣∣ u

(1 + u)
− v

(1 + v)

∣∣∣∣
=

340e−t|u− v|
(7 + et)(1 + u)(1 + v)

≤ 340e−t

(7 + et)
|u− v|

≤ 85

2
|u− v|.

Hence, condition C2 holds with L =
85

2
.

By simple computation, we have

w = β(α− 1) =
5

8

(
1

2

)
=

5

16
.

µ = [w + γ] =
5

8

(
1

2

)
+

3

16
=

1

2
.

µΓα =
1

2
·
√
π

2
=

√
π

4
.

co =
1

µ

∫ 1

0

p(t)tα−1dt = 2 · 3

20

∫ 1

0

tαdt =
3

10

(
2

5

)
=

3

25
.

λ0 =
co

1− co
=

(
3
25

)
1−

(
3
25

) =
3

25

(
25

22

)
=

3

22
.

σ = 1 + λ0 = 1 +
3

22
=

25

22
= 1.136363636.
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Also, k =

∫ 1

0

G1(s, s)ds

=

∫ 1

0

sα−1[w(1− s)α−2 + γ(1− s)α−1]
µΓα

ds

=
4√
π

[
5

16

∫ 1

0

sα−1(1− s)α−2ds+
3

16

∫ 1

0

sα−1(1− s)α−1ds
]

=
5
√
π

8
+

3
√
π

32

= 1.273951205.

Moreover, for t ∈ [0, 1] and u ∈ [0, 5], we obtain

L1 = max
0≤t≤1

∣∣∣∣ 340e−tu

(7 + et)(1 + u)

∣∣∣∣
=

∣∣∣∣ 340e−1(5)

(7 + e1)(1 + 5)

∣∣∣∣
= 7.570874104.

For all t ∈ [0, 1], we have a(t) ≤ 1

15
= m and

r = kL1mσ = 0.730676067.

Thus, all the hypotheses of Theorem 3.1 are satisfied and the BVP (4.1) has at
least one positive solution.

2. Consider the nonlinear boundary value problem:

D
3
2u(t) +

(1− t)
2

[
u2

3
+

7t

2
+ 1

]
= 0, t ∈ (0, 1),

u(0) = 0,
3

16
u(1) +

5

8
u′(1) =

∫ 1

0

3t

20
· u(t)dt.

 (4.2)

Here, α =
3

2
, γ =

3

16
, β =

5

8
, a(t) =

(1− s)
2

and p(t) =
3t

20
.∫ 1

0

G1(s, s)a(s)ds

=

∫ 1

0

sα−1[w(1− s)α−2 + γ(1− s)α−1]
µΓα

· 1− s
2

ds

=
1

Γα

[
5

16

∫ 1

0

sα−1(1− s)α−1ds+
3

16

∫ 1

0

sα−1(1− s)αds
]
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=
1

Γα

[
5

16
B(α, α) +

3

16
B(α, α + 1)

]

=
13
√
π

128
= 0.1800148442.

∴ L =

(∫ 1

0

G1(s, s)a(s)ds

)−1
= 5.555097439.

Also, we have

σ

∫ 3
4

1
4

m(s)G1(s, s)a(s)ds

= σ

∫ 3
4

1
4

(
(3
4
)α−1 [w(1− s)α−2 + γ(1− s)α−1]− µ

(
3
4
− s
)α−1

µΓα
· (1− s)

2

)
ds

=
σ

Γα

[
5

16
·
(

3

4

)0.5 ∫ 3
4

1
4

(1− s)α−1ds +
3

16
·
(

3

4

)0.5 ∫ 3
4

1
4

(1− s)αds

− 1

2

∫ 3
4

1
4

(
3

4
− s
)α−1

(1− s)ds

]
ds,

=
25

11
√
π

(0.0946347551 + 0.0263207804− 0.0648181215) = 0.0719821459.

∴ M =

(
σ

∫ 3
4

1
4

m(s)G1(s, s)a(s)ds

)−1
= 13.892333821.

Choose r∗ = 2
17

and R = 5. Then for (t, u) ∈ [0, 1]× [0, 5], we obtain

f(t, u) =
u2

3
+

7t

2
+ 1 ≤ 12.8333333333 ≤ LR = 27.775487195.

Also, for (t, u) ∈ [1
4
, 3
4
]× (0, 2

17
], we obtain

f(t, u) =
u2

3
+

7t

2
+ 1 ≥ 3.6296136101 ≥Mr∗ = 1.6343922142.

Hence, all the hypotheses of Theorem 3.2 are satisfied and the BVP (4.2) has at
least one positive solution u ∈ K such that 2

17
≤ ‖u‖ ≤ 5.

5. Conclusion

In this work, the existence of positive solutions to the BVP (1.4) was established
by the application of Krasnosel’skii fixed-point theorem in a cone. We discussed
two practical examples to support our theoretical results.
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