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PARAMETRIC MODELLING USING BAYESIAN APPROACH

JULIANA CONSUL∗, EVANS OSAISAI, BUNAKIYE JAPHETH, AND JOSEPH ERHO

Abstract. In this paper, we focus on the applicability of a Bayesian analysis
to survival time of breast cancer data by assuming that the survival times
follow a Weibull distribution. This study determines a method of estimating
the model parameters in survival analysis. The proportional hazard model is
used to relate the hazard function to the covariate values for an individual. The
scale parameter of a Weibull distribution is used to incorporate the covariates
of the individual and the linear predictor is expressed as a logarithmic link
function of the hazard multiplier. The Bayesian approach to survival analysis
is used via the Just another Gibbs sampler (RJAGS) program in R language
and R functions was used to calculate the prognostic index as a linear predictor
on an index from 0 to 100 which is used for predicting the outcome of the
patients on the basis of the clinical information. The posterior summaries of
interest which were derived from the posterior distribution are provided. The
results from the posterior distribution obtained from this study can be used
in the calculation of the risk value of the breast cancer patient. Thus, the
risk value helps the researcher to have an assess to the patients exposure to
breast cancer. The Parametric model was seen to be a very attractive option of
modelling and the ease of interpretation of parameters is of benefit especially
for clinicians.

1. Introduction

Survival analysis is one of the most important fields of Statistics in Medicine
and Health Sciences. The standard statistical techniques can not be applied to
survival data because in most cases, the data may include dealing with ”incom-
plete” or ”censored” data [18]. Also, normal distribution are usually inappropri-
ate for analysing survival data because times are always positive, have skewed
distribution, the variances depend upon covariates and hence, distributions such
as Weibull, Gamma etc are used. Censoring affect the likelihood function. The
right censoring which occurs when the failure time is known to be larger than
some given time is mostly used [25]. More details on censoring are discussed in

2010 Mathematics Subject Classification. Primary: 22E30. Secondary: 58J05.
Key words and phrases. prognosis index, modelling, parameters, variables, rjags.
c©2022 Department of Mathematics, University of Lagos.
Submitted: August 10, 2021. Revised: December 15, 2021. Accepted: Februaryl 16, 2022.
∗ Correspondence.

23



24 J. I. CONSUL, E. F. OSAISAI, B. R. JAPHETH, AND J. A. ERHO

[17] and [18].

The survival function, hazard function and cumulative hazard function are com-
monly used to describe survival data. The proportional hazard model is mostly
known to explore the relationship between the covariates and survival [8]. It is
widely used in the analysis of clinical trials. The baseline hazard is a constant
term which corresponds to an intercept and is independent of the covariates. In
survival analysis, inferences are made for the effects of explanatory variables and
the baseline hazards from life time data through maximum likelihood [16]. There
are parametric survival models for which the restrictive assumption of hazard is
not required. A parametric survival model is one in which the survival time is as-
sumed to follow a known distribution. Computations in survival analysis are done
either using the Bayesian or the traditional frequentist approach. The Bayesian
approach incorporates the prior knowledge into the current analysis whereas the
frequentist approach does not.

Recently, there has been lots of attention to Bayesian analysis to modelling
data. For example, [4] applied a spatial frailty model to infant mortality by
assuming a parametric Weibull baseline hazard; [1] discussed a class of fully
parametric proportional hazard models in which the baseline hazard is assumed
to be a power transform of the time scale and the survival times are assumed to
follow a Weibull distribution; [2] summarised some of the most popularly used
Bayesian survival models; [14] reviewed some parametric and semi parametric ap-
proaches to Bayesian survival analysis with focus on proportional hazard models;
[19] analysed survival times of patients treated with two different treatment using
Weibull parametric model of Bayesian survival analysis; [6] proposed a Bayesian
inference to estimate the treatment effect using a proportional hazard model for
right censored data. However, all of these examples focused on the proportional
hazard models which are the most popular survival models. In this study, we
demonstrate the applicability of a parametric modelling of the survival time of
breast cancer data and to justify the applicability to the Bayesian approach. This
study determines a way of estimating the model parameters in survival analysis.
The covariates of the individual are incorporated into the model using the hazard
multiplier and the linear predictor is expressed using a logarithmic link function
of the hazard multiplier.

In this research, the Bayesian approach to survival analysis is employed via
the Just another Gibbs sampler (RJAGS) program in R language [28], [30]. The
prognostic index which is usually used for predicting the outcome in patients on
the basis of the clinical information of the patients will also be calculated using R
functions. A breast cancer data with large number of patients from Saudi Cancer
Registry (SCR) was used for illustration in this research.

[24] reviewed some frequentist methods (such as nonparametric methods, semi
parametric and parametric methods) and Bayesian approaches to survival analy-
sis. The Bayesian survival analysis is mostly used in biomedical fields due to the
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availability of softwares and the ease of interpretation of the research findings.
The Bayesian approach is flexible in terms of the uncertainty about the unknown
parameters in the model which are usually expressed through the prior distribu-
tion. The prior distribution is a belief about the unknown parameter without
reference to the data. Bayesian inference (in form of the posterior distribution)
is then required to capture all we know about the parameters by combining the
likelihood (from the observed data) and the prior experience. The proper choice
of the prior distribution also plays an important role in achieving successful ob-
jectives in Bayesian survival analysis since the probability of an event is measured
as a degree of belief. The Bayesian approach to inference also treats parameters
as random and makes direct statements about them and new samples are drawn
from the posterior distribution which maintains stability.

2. Materials and Methods

2.1. The proportional hazard model. Let the survival time ti of an individual
i be a realisation of a non-negative random variable Ti with cumulative distribu-
tion function (cdf) Fi(t) which is the lifetime distribution function of Ti and is
given by

Fi(t) = Pr(Ti < t)

and the probability density function fi(t) is given by

fi(t) =
d

dt
Fi(t)

The survival function Si(t) of an individual i can be defined as the probability
that the individual survives longer than some specified time t where t ranges from
0 to ∞ [26[, [9]. This can be expressed mathematically as

Si(t) = Pr(Ti ≥ t) = 1− Fi(t) =

∫ ∞
t

fi(t)dt

The Hazard function hi(t) of an individual i can be expressed mathematically
as

hi(t) =
fi(t)

Si(t)
(2.1)

The survival function can be estimated using Kaplan-Meier estimator, which is
also the default method in most statistical packages [25]. Alternatively, Nelson-
Aalen estimator is available to estimate the survival function. This research will
use a Bayesian approach to describe the survival data with a Weibull modelling.

The proportional hazard and accelerated life models are both ways of relating
the covariates to the survival distribution. In this research, we concentrate on
using the proportional hazard model.

The proportional hazard model uses the assumption of proportionality to relate
the hazard function to the covariate values for an individual. Suppose that we
have M covariates for m = 1, 2,M and n individuals for i = 1, 2, .., n. The
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covariate vector for the ith individual is denoted by X i and given as X i =
(1, xi,1, xi,2, ....xi,M). The proportional hazard model assumes that any two in-
dividuals i and j with hazard function hi(t) and hj(t) at time t and covariate
vectors X i = (1, xi,1, xi,2, ....xi,M) and Xj = (1, xj,1, xj,2, ....xj,M) have their haz-
ards related by

hi(t) = λi,j × hj(t)
where λi,j is a constant and does not depend on t. The proportional hazard model
can also be written as:

hi(t) = λi × h0(t) (2.2)

where h0(t) is the baseline hazard function which is a function of time t but
does not involve the covariates X i = (1, xi,1, xi,2, ....xi,M). The quantity λi is the
hazard multiplier which depends on the covariates of the individual i but not on
the time variable t and hence, the scale parameter λ of a Weibull distribution is
used to incorporate the covariates of the individual. The value of λi ≥ 0. The
linear predictor ηi is expressed using a logarithmic link function of the hazard
multiplier and is given as

ηi = g(λi)

where g is a known function called the link function which must be monotonic
and differentiable. We make

ηi = XT
i β

where XT
i is the transpose of the vector X i and the vector of parameters β =

(β0, β1, . . . , βM)T

where xi,m is the value of covariate m for the ith individual, β0 is the baseline
parameter and βm is the covariate effect of the mth covariate.
We have that λi is expressed as

λi = exp {ηi}
= exp

{
XT
i β
}

So, g(λi) = log λi.

And so, the linear predictor ηi is given as

log λi = ηi = β0 +
M∑
m=1

βmxi,m (2.3)

The linear predictor is used to construct the prognostic index from the pro-
portional hazard model. Hence, the prognostic index is the main product of a
proportional hazard model. The Prognostic models are used for predicting the
outcome in patients on the basis of the clinical information of the patient usually
before treatment. The prognostic indices can be used to estimate the length of an
individuals survival. It helps to take clinical decisions and helps doctors choose
an appropriate treatment for the patients. The prognostic indices could help in
creating clinical risk groups which stratify patients by the severity of the disease.
[29] reviewed current practice in methods used to develop and evaluate the per-
formance of prognostic indices and risk groups from the prognostic models. High
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values of the prognostic index indicate a worse prognosis or adverse outcome for
the event of interest.

2.2. Bayesian Inference. Bayesian inference requires the combination of prior
experience (which is in the form of prior probability) and the observed data (which
is in the form of a likelihood L(θ|Y ) ) [16]. The prior beliefs about a parameter
θ, with no reference to the data, can be expressed in the form of the probability
density function π(θ). The posterior distribution combines the likelihood and
the prior which then captures all we know about the parameters. The posterior
probability density function for the parameter θ, π(θ|Y ) summarises our beliefs
about θ after seeing the data, Y . Using the Bayes formula, we have that the
posterior distribution would be given as

π(θ|Y ) ∝ π(θ)× L(θ|Y )

and is expressed as

Posterior ∝ Prior× Likelihood.

We will note that Bayesian inference often involves calculations which are an-
alytically intractable. These are typically done using Markov chain Monte Carlo
methods (MCMC) [12]. Some of the methods include Metropolis and Metropolis-
Hastings algorithm, Gibbs sampler and Metropolis within Gibbs algorithm.
We will discuss the likelihood contribution in survival analysis and the prior dis-
tribution about the model parameters.

2.2.1. The likelihood contribution in survival analysis. Suppose that we have n
individuals with lifetimes governed by a survival function S(t), probability den-
sity function f(t) and the ith individual has an observation time ti. The general
form of the likelihood, where some observations are right censored is given as

L =
∏
i∈E

f(ti)
∏
i∈C

S(ti)

where C is the set of right censored individuals and E is the set of individuals that
had the event. The contribution of a right censored observation to the likelihood
is S(ti). This is the probability that the individual is still alive at time ti.

We suppose that the lifetime random variable has a Weibull distribution with
scale parameter (λ) and shape parameter (α). Then, the probability density
function of the ith individual is given by

f(t|λi, α) = λiαt
α−1 exp {−λitα}

The survival function for the individual is given by

S(t|λi, α) = exp {−λitαi }
Let D = (T,X, δ,M, n) where:

n is the number of individuals
M is the number of covariates used in the model
T = (t1, t2, .......tn)T , where ti is the event or censoring time for the ith individual
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δ = (δ1, ....δn)T , where δi is the event indicator which indicates whether the indi-
vidual died or was right censored. We have

δi =

{
1 if the individual died

0 if censored

X is a n by (M + 1) matrix such that the ith row of X with (1, xi,1, . . . , xi,M)

From Equation 2.1, h(t) = f(t)
S(t)

and we have that f(t) = h(t)S(t). Therefore,

the likelihood is ∏
hδii (t)Si(t) =

[∏
E

hi(t)

][∏
E∪C

Si(t)

]
where E ∪C is the set of both censored individuals and individuals that had the
event (that is all individuals).

If we suppose that the lifetime random variable has a Weibull distribution with
parameters (λ, α), the probability density function of the ith individual is denoted
by

f(t|λi, α) = λiαt
α−1 exp {−λitα}

and the survival function for the individual is given by

S(t|λi, α) = exp {−λitαi }
The likelihood contribution from the data is then given by

L(β, α|D) =
∏
i∈E

f(ti|λi, α)
∏
i∈C

S(ti|λi, α)

=
∏
i∈E

λiαt
α−1
i

∏
i∈E∪C

exp {−λitαi }

=

[∏
i∈E

λi

]
αnD

[∏
i∈E

tα−1i

]
exp

{
−
∑
i∈E∪C

λit
α
i

}
(2.4)

where nD is the number of individuals in E.

2.2.2. Prior distribution for the coefficients of regression parameters. A Bayesian
analysis requires the specification of prior information about the model param-
eters by expressing beliefs about the parameters in the form of a probability
distribution before we look at the observations. The prior distribution should re-
flect information about the model parameters. The prior information is often an
opinion or subjective belief of an “expert” within the field of investigation from
whom information is being elicited. This is appropriate, for example, when the
purpose of the analysis is to inform a decision which must be made. In other cases,
the purpose may be simply to communicate the results of a scientific investiga-
tion. In such cases, one or more “reasonable” prior specification may be used [11].

The structures of prior distributions were constructed depending on the type of
variable. We follow the construction of a prior for the coefficient of a quantitative
covariate in the context of a general linear model following an example in [10].
We incorporate our prior beliefs into the construction of the covariance matrix
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of the parameters. The prior distribution for the covariances will be specified
by thinking in terms of the coefficient of determination to find the correlation
between the parameters.

2.3. Bayesian survival modelling. The Weibull distribution [31] is used be-
cause the shape parameter accounts for additional possible hazard shapes and
the scale parameter. From the likelihood given in Equation 2.4, the logarithm of
the likelihood is given by

` = log
{
L(β, α|D)

}
=
∑
i∈E

{log {λi}+ (α− 1) log {ti}}+ nD log{α} −
n∑
i=1

λit
α
i

The vector of regression parameters is given as

β = (β0, β1, . . . , βM)T

The prior density for the vector of regression parameters β could be a mul-
tivariate normal distribution NM+1(µ, V ) where µ is the vector of prior means

given as µ = (µ0, ....µM)T and and V is a M + 1 by M + 1 covariance matrix.
The prior density for the vector of regression coefficient is then given by

(2π)−M/2|V |−1/2 exp

{
−1

2

[
(β − µ)TV −1(β − µ)

]}
For illustration, we may choose to give α and β independent prior on the

grounds that beliefs about β are beliefs about the effects of covariates on the
hazard function. In general, α and β need not be independent. A special case
where the regression coefficients are independent simplifies the logarithm of the
multivariate normal prior density to

−M
2

log{2π} − 1

2

M∑
m=0

log |Vm| −
1

2

M∑
m=0

(βm − µm)2

Vm

given that V = diag(V0, V1, ....VM)
where V0 is the variance of the intercept regression coefficient and Vm is the
variance of the coefficient of the mth covariate since the coefficients are assumed
independent. The prior distribution for α could be a gamma distribution α ∼
Ga(a, b) with density given by

π(α|a, b) =
ba

Γ(a)
αa−1 exp {−bα}

∝ αa−1 exp {−bα}
Suppose that we denote the joint prior density of the parameters by π(β, α).

The posterior density π(β, α|Y ) is then given by

π(β, α|Y ) ∝ prior× likelihood

= κπ(β, α)L(β, α|Y )

where κ is the constant of proportionality. The logarithm of the posterior density
is then given as
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log{π(β, α|Y )} = log κ+ (a− 1) logα− bα− M

2
log{2π} − 1

2

M∑
m=0

log{Vm}

−1

2

M∑
m=0

(βm − µm)2

Vm
+
∑
i∈E

{log(λi) + (α− 1) log(ti)}

+nD log(α)−
n∑
i=1

λit
α
i

The joint posterior density would not have a closed form but we can simulate
from it using MCMC techniques.

2.4. Application: Bayesian survival modelling to Breast cancer data.
A set of data with large number of patients are available for illustration in this
research. The data set was provided by the Saudi Cancer Registry (SCR) of the
King Faisal Specialist Hospital and Research Centre. The data was collected from
the thirteen administrative regions in the Saudi Kingdom which include Riyadh,
Makkah, Madinah, Qassim, Hail, Jouf, Tabouk, Najran, Baha, Asir, Jezan, In-
ternational and the eastern and northern regions. The data set includes survival
time, censoring indicator, sex, age, marital status, tumour details (for example,
laterality, grade, extent and topography) for 5432 patients with complete covari-
ate values.

The explanatory variables used in the data set are described as follows:
Age: This variable provides the patient age at diagnosis.
Gender: It refers to patients gender with the value which were “1” for male and
“2” for female.
Grade: The grade of a tumor describes how abnormal the tumor cell looked. In
our data set, we have used the value “1” for Grade I (well differentiated or low
grade), “2’ for Grade II (moderately differentiated or intermediate grade), “3”
for Grade III (Poorly differentiated or high grade) and “4” for Grade IV (undif-
ferentiated or high grade).
Extent: This variable categorises the breast cancer based on the extent of the
disease. In this data set, we have used the value “1” for localised, “2” for regional
and “3” for Distant Metastasis.
Laterality: This variable identifies the side of a paired organ or of the body on
which the tumor originated. In our data, we have used the value “1” as Bilateral
involvement, “2” for Left, “3” for Paired, and “4” for right.
Topography: The variable indicates the site of origin of the tumor or where the
tumor arose. The breast halves are divided into quarters or quadrants. In our
data set, we have used the value “1” for nipple, “2” for Central portion of breast,
“3” for Upper-inner quadrant of breast , “4” for Lower-inner quadrant of breast,
“5” for Upper-outer quadrant of breast, “6” for Lower outer quadrant of breast,
“7” for Auxillary tail of breast, “8” for Overlapping lesion of breast and “9” for
Breast, NOS.
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Marital status: In the data set, we have used the value “1” for divorced, “2”
for married, “3” for single and “4” for widowed.

In the parametric model, the distribution of the event is specified in terms of
unknown parameters which in this case are the coefficient of the covariates or the
covariate effects. We apply the Bayesian survival modelling to the Breast cancer
data. The covariates and their notations are given in in Table 1.

Table 1. Covariates and notations

Covariates Notation Covariates Notation
Age x1 Gender x5
Topology x2 Marital Status x6
Laterality x3 Extent x7
Grade x4

We will suppose that the overall survival lifetime is Weibull(λi, α), where the
hazard multiplier λi depends on the linear predictor ηi which is used to incorpo-
rate the covariates and follows from Equation 2.3 and is further expressed as

ηi = β0+β1xi,1+
9∑

k=1

β2,kδi,2,k+
4∑

k=1

β3,kδi,3,k+
4∑

k=1

β4,kδi,4,k+β5xi,5+
4∑

k=1

β6,kδi,6,k+
3∑

k=1

β7,kδi,7,k

(2.5)
where δi,j,k = 1 if xi,j = k and δi,j,k = 0 otherwise for j = 2, 3, 4, 6, 7.

We construct the prior distribution for the parameters of the regression or
linear predictor. A categorical variable with p levels will contribute p−1 columns
to the design matrix. We follow explanations in [10] to construct the prior means
and standard deviations for the parameters of linear predictor as given in Table
2.

The prior distribution constructed in Table 2 are chosen in such a way that
will quantify one’s prior belief about the likely values for the unknown parameters
and these values are independent of the data from the current study.

3. Results

The RJAGS package within the R software was used to run the analysis of the
Bayesian model using MCMC. The main advantage of RJAGS in comparison of
BUGS model specification language [23] is that the former is easier to setup and
works faster. It allows the researcher to provide initial values for the parameters.

The Metropolis-Hastings within Gibbs algorithm was applied using R JAGS
software [27]. Following a burn-in of 5000 iterations of the sampler, 100000 iter-
ations were taken. Convergence was checked using two chains starting from very
different values. Visual inspection of the trace plots of the covariate parame-
ters showed that the mixing appeared very satisfactory. The posterior numerical
summaries of the parameters are also given in Table 3.

The posterior summaries given in Table 3 are estimates of the posterior dis-
tribution of the parameters of the model obtained using the MCMC algorithm.
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Table 2. The prior means and standard deviations for the param-
eters of the linear predictor

Parameter prior mean prior standard deviation
β0 (base-
line pa-
rameter)

-1.500 0.400

β1 (Age
parameter)

0.040 0.030

δ2,1 0.000 0.140
δ2,2 0.000 0.077
δ2,3 0.000 0.055
δ2,4 0.000 0.141
δ2,5 0.000 0.158
δ2,6 0.000 0.183
δ2,7 0.000 0.224
δ2,8 0.000 0.316
δ3,1 0.000 0.055
δ3,2 0.000 0.770
δ3,3 0.000 0.141
δ4,1 0.000 0.055
δ4,2 0.000 0.770
δ4,3 0.000 0.141
δ5 (Gender
parameter)

0.050 0.150

δ6,1 0.000 0.055
δ6,2 0.000 0.770
δ6,3 0.000 0.141
δ7,1 0.000 0.055
δ7,2 0.000 0.770
α 1 0.5

These values are used in the calculation of the prognostic index or risk value as
will be discussed in Section 3.1.

3.1. Calculation of the prognostic index for the Weibull survival mod-
elling to the Breast cancer data set. We recall the formula of the linear
predictor in Equation 2.3 as follows

log λi = ηi = β0 +
M∑
m=1

βmxi,m (3.1)

The linear predictor has a linear structure with the posterior values of covariate
effects β = β0, β1, . . . , βM which are given in Table 3. We can obtain the expecta-
tion of the linear predictor by substituting the posterior means into the formula.
We have that the expectation of the linear predictor for a new individual i

′
is
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Table 3. The posterior means and standard deviations for the
parameters of the linear predictor

Parameter posterior mean posterior standard deviation
β0 (baseline parameter) -1.210 0.172
β1 (Age parameter) 0.010 0.003
β2,1 (Topology 1 parameter) -0.214 0.111
β2,2 (Topology 2 parameter) - 0.217 0.113
β2,3 (Topology 3 parameter) -0.262 0.120
β2,4 (Topology 4 parameter) - 0.144 0.167
β2,5 (Topology 5 parameter) - 0.206 0.104
β2,6 (Topology 6 parameter) -0.223 0.196
β2,7 (Topology 7 parameter) 0.963 0.429
β2,8 (Topology 8 parameter) 0.039 0.106
β2,9 (Topology 9 parameter) 0.263 0.089
β3,1 (Laterality 1 parameter) 0.011 0.090
β3,2 (Laterality 2 parameter) 0.012 0.089
β3,3 (Laterality 3 parameter) 0.036 0.168
β3,4 (Laterality 4 parameter) 0.059 0.194
β4,1 (Grade 1 parameter) -0.139 0.092
β4,2 (Grade 2 parameter) - 0.203 0.070
β4,3 (Grade 3 parameter) 0.131 0.075
β4,4 (Grade 4 parameter) 0.211 0.192
β5 (Gender parameter) 0.031 0.103
β6,1 (Marital 1 parameter) -0.075 0.064
β6,2 (Marital 2 parameter) 0.034 0.088
β6,3 (Marital 3 parameter) -0.204 0.097
β6,4 (Marital 4 parameter) 0.244 0.140
β7,1 (Extent 1 parameter) -0.182 0.043
β7,2 (Extent 2 parameter) 0.161 0.045
β7,3 (Extent 3 parameter) 0.343 0.049
α 1.379 0.040

log λi′ = ηi′ = β0′ +
M∑
m=1

βm′xi′ ,m (3.2)

where β0′ is the posterior expectation of β0 and βm′ is the corresponding posterior
expectation of βm. We might prefer to index the linear predictor in a range

(0, 100). We do this by finding 100Φ−1
(

η
′
i− mean

standard deviation

)
where Φ() is the standard

normal distribution function and mean and standard deviation are the sample
mean and sample standard deviation of the values of η for all patients in the
breast cancer data set using the posterior means of β0, . . . , βM . For instance, a
patient with the covariate vector x = (45, 9, 2, 2, 2, 1, 1)T for the covariates age,
topology, laterality, grade, gender, marital status and extent respectively will



34 J. I. CONSUL, E. F. OSAISAI, B. R. JAPHETH, AND J. A. ERHO

have an index of 49. This will mean that the patient has an index of 49 on a scale
from 0 to 100 and this is an average risk value.

4. Conclusion

This research has focused on the Bayesian paradigm to parametric survival
modelling using Weibull Distribution. The Bayesian inference was used in form
of the posterior distribution which captured all we know about the parameters
by combining the likelihood (from the observed data) and the prior experience (
what we think about the parameters before we see the data) . This approach to
inference also treated parameters as random and made direct statements about
them. The likelihood contribution of the right censored observations from the
data were discussed and thereby simplified. The choice of the prior distribution
also played an important role in achieving successful inference in this research.
The posterior numerical summaries which were derived from posterior samples
of the parameters have been displayed. The expectation of the linear predictor
was obtained by substituting the posterior means. The prognosis index for any
individual was also calculated by indexing the linear predictor in a range(0, 100)
from the proportional hazard model.

The estimation of the parametric model is carried out by assuming a distribu-
tion of the survival time. The Parametric model was seen to be a very attractive
option of modelling as the hazard functions are of primary interest. The ease of
interpretation of parameters may be another benefit especially for clinicians.
The Bayesian approach was flexible in terms of the uncertainty about the un-
known parameters in the model which are usually expressed through the prior
distribution. This approach is very important as it made use of the available
information. The Bayesian approach to inference is transparent in making in-
ferences and the posterior summarises can be used for making predictions about
future events. The approach used facilitates the implementation of the analysis of
higher dimension data and highly realistic models that account for complicating
features. The prognostic index will help the researcher get assess to the exposure
of breast cancer. Some of the limitations of the Bayesian are: there is a need for
software for making inferences and the choice of prior distribution which should
explain what is known before collection of data.
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