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ABSTRACT. The paper presents Gamma and Beta functions and their 
applications to real life problems. After relating the gamma function with 
Euler’s infinite products, the Hermite series and Hypergeometric series, then 
the computation of perimeter ( np ) of a polygon involving gamma function by 

which a factor 
S2
np

 exceeds the perimeter of a unit circle is presented in the 

sense of Jorda and Cortise. Application to Hermite-Laguerre polynomial and 
multivariate calculus Hypergeometric matrix functions are presented with 
convergence of gamma matrix using the Ratio Test. The procedure for 
detecting nearness to singularity of the gamma matrix is described in terms of 
condition number where eigenvalues are ordered according to their 
magnitudes. In addition, the Numerical radius of the Gamma matrix is 
introduced which helps in the computation of a bound for the condition number 
of the matrix. In particular, we paid special attention to the analysis of the 
pendulum problem as a second order differential initial value problem wherein, 
Jacobi elliptic integrals of first and second kinds play major roles. The bounds 
for these elliptic integrals are discussed in details using some ideas in the 
existing literatures. It is established in this paper that, there exists no 
universally most acceptable bound for these Jacobi elliptic integrals as attested 
to by various authors.  It is therefore suggested in this paper that these bounds 
may be subjected to probabilistic analysis in our future work. It is also hoped to 
link these bounds for the Jacobi elliptic integrals with the Weierstrass elliptic 
functions as well.  

 

1. INTRODUCTION 
 

   The first aim of this article is to answer in the affirmative that there exists [3].  
 

1.1. The Gamma and Beta functions have several applications in scientific and engineering 
practices other than statistical density functions in which the later were originally defined and 
intended for use Kargin and Kurt (2013), Bao (2021). Gamma function has several uses in the 
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representation of hypergeometric function and infinite products, Huang et al (2017). This 
paper aims at a general framework for computing Gamma and Beta functions as well as 
conformal radius applied on multivariate functional equations found in optimization theory 
and complex integral calculus. We use the complex contour integrals as deriving basic 
properties for the gamma function and relate this to inverse Laplace transform using ideas 
due to Berg (2004), taking the orientation counterclockwise, the deformed Bromwich 
contour. With deep knowledge of Laurent series, various residue theorems could be obtained 
which are useful in the applications of gamma function and its allied functions.  

Gamma, Beta, hypergeometric functions have major roles they play in the treatments and 
analyses of swinging pendulum differential equation problems. For instance, Jacobi ( or 
Legendre) elliptic integrals of both first and second kinds owe much of treatise to the gamma 
and hypergeometric functions. Jacobi elliptic integrals of both first and second kinds have 
various uses in engineering designs of rotating rods and a great impetus for expressing strong 
solutions to mathematical differential equations. 

Definition 1.1, Berg (2004): (Contour or path of complex integral). Let o],[: baK ₵ be an 

oriented differentiable /C -curve and o*:Kf ₵ be continuous. By the contour (or path) 
integral of f  along K  we mean the complex number  

� �³ ³ ³  
K K

KK
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for which the orientation over Jordan arc is rectifiable. 

In a simple language, the word contour mean a continuous parameterization o],[: baK ₵ 

which is piecewise /C  continuous for which exists a partition  

bttta n  ��� �110 ... , such that,  ),...,2,1(,,1 nktt kkk   �KK  are /C parameterizations 
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The Cauchy’s integral theorem states that if �Df : ₵o₵ be holomorphic in a simply 
connected domain D  and given that K  be a closed path in D , then 
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Cauchy’s integral theorem is the basis upon which many formulae for complex functions are 
derived and their convergences analyzed. The Borel’s covering theorem for instance, asserts  
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that if K be a closed and bounded subset of₵, and for every family ^ ` IiiF �  of open sets in ₵ 

covering K such that *
Ii

iFK
�

� , there are finitely many indices Iiii n �...,,, 21  for which 

holds 
niii FFFK ���� ...

21
. 

We introduce the gamma function by the equation 

³
f

�� *
0

1)( dtetz tz ,               (Re z>0)                                         (1.1.1) 

where, tzz et log)1(1 ��   , and Rt�log  so that !)1(,1)1(,)1( nnzzz  �* ** �* . 

The limiting Stirling’s series is defined by the equation  

� �nnennn � S!  , ( for fon )                                                    (1.1.2) 

The Spouge’s formula for gamma function Pugh (2004) is defined to be 
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where kccaN ,1,1][ 0  �  is the residue of � �� � � � 2
1

2
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21 ��¸
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§ ����* Sazz eazz  at kz � .The a  

is a free parameter  suitable for proper adjustment  in achieving good accuracy to the 
approximation. More definitive in our presentation Pugh(2004) for the Stirling series is the 
equation: 
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where, jB2  are the Bernouli numbers obtained from the Maclaurin series  for 

¦
f
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t To define the inverse gamma function Temme (1996), the method of Euler 

was initiated. Firstly define  
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Then the inverse gamma function in view of Equation (1.1.5) is given in the form: 
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where  (.)inv  denotes inverse function, and the poles are at ...,2,1,0 �� z , such that the 
reflection formula is therefore expressed in the form: 
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For Nn� , the first three rational (fractional) form of gamma functions are well known, 
Rainville (1960) in the form: 
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Conversely, for negative integers their gamma functions Hannah (2013) are defined in the 
form: 

� � � �
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Setting as sut   into Equation (1.1.1) gives rise to the Laplace transform, Schmelzer and 
Trefethen (2007) in the form: 
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The recoverable part of Equation (1.1.7) as the byproduct in the calculation yields for the 
inverse Laplace transform  1�zu  . This is given by the equation 
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The path K  is the Jordan arc taken counterclockwise the deformed Bromwich contour. 

Now, assuming instead, we set kus   in Equation (1.1.7) this gives  
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where  
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sz dses
iz S2
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1                                                        (1.1.10) 

Equations (1.1.9) and (1.1.10) are often computed using suitable trapezoid quadrature rule 
along the contour, the path traced out by the complex integrals. 

The link between gamma function and Euler infinite products is presented. Thus, the Euler’s 
infinite product, for ...,2,1,0 ��zz , is  defined in the form:  
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Using Holder’s inequality e.g., )1( f�� p  and 111
 �

qp .
 , there follows: 
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If we set, instead that
p
1

 O  and, 
q
11  � O , the convexity  of )(log z*  is expressed  

following  from convexity of  

� �� � � � � � � �yzyz *��*d��* log1log1log OOOO .                             (1.1.12) 

We give the respective Euler’s and Gauss’ limiting formula in their equivalent forms for 
gamma function similar to equation ( 1.1.5) in their forms:Euler’s  : 
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The categorization of this paper is as follows: Section 2 discusses the Beta function and its 
associated conformal radius. We link the gamma function with regularity spaces of Hankel 
functions and the hypergeometric function. The matrix gamma and Beta functions are 
presented for the multivariate functional calculus. We give further information on the 
condition number of a gamma matrix which can be computed as a ratio of Numerical radius 
of a matrix to the spectral radius of the matrix. Condition for nearness to singularity is 
discussed in terms of ratio of largest eigenvalue to the smallest eigenvalue assuming the 
eigenvalues are ordered according to their magnitudes and counting their multiplicities (if 
any) so that the number of eigenvalues is exact. We give numerical example demonstrating 
the discussed formulae in section3.  Useful bounds for the Jacobi elliptic integral are given 
for the pendulum problem as a second order differential equation Initial Value problem using 
gamma and hypergeometric functions. Section 4 gives the discussions aspect of results and 
analysis in the paper. In section 5, we give conclusion based on the findings of our numerical 
examples with these methods. 

 
2. MATERIALS AND METHODS 

 
The following methods and materials shall be adopted for our approach. 

1.2 The Beta Function and Associated Conformal Radius 

We define the Euler Beta function by the equation 
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Integration by part applied on Equation (2.1.1) gives that  
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We link the hyper geometric function with the gamma function. Firstly, we give the Hankel 
contour integral. As usual, consider the integral given by  
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We consider a positive oriented contour at the point )0(,0 !� � xix  above the real x -axis 
which encircles the coordinate origin in counterclockwise manner Pugh (2004) that returns to 
the point �� 0ix below the x-axis by fixing the branch of the multivalued function � � 1�� zt  . 
Then define that  

� � � � � �� �tzet z �� � � ln11 , where � �t�ln  is purely real on the negative real axis and argument 
on K  being SS d�d� )arg( t . 

The radius being denoted by U such that � � Sr � targ  and � � � � 111 ���  � zziz tet B on each 
segment of the contour.  

Using � � TU iet  � , and writing that  
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We take the limit for fox   and obtained   
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Equation (2.1.6) is the Hankel’s representation of gamma function which is holomorphic 
except at the points ...,2,1,0 rr z  

The hypergeometric series with variable z is defined to be the equation 
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The cba ,,  are arbitrary complex numbers. Therefore, the hypergeometric series is in the 
form 
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The convergence of hypergeometric series in Equation ( 2.1.8) is demonstrated by the ratio 
test  
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We give two commonly used cases as shown below: 
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2.2  Applications to Multivariate analysis: The role of Gamma and Beta matrix 
 functions 

 
We implement Hermite polynomials and Hypergeometric matrix function. Writing the 
Hermite polynomials in the sense of  Kargin and Kurt (2013) we have that 
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This satisfies the three term recurrence  

� � � � � � � � ,1,,12,2, 21 t�� �� nAxHnAxHAxAxH nnn                               (2.2.2) 

� � � � IAxHAxH   � ,,0, 11 , where A is a real or complex square matrix, I is an identity 
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To compute the inverse matrix for A , Golub and Van-Loan (1989), Horn and Johnson (1993) 
we adopt the Gaussian-LU factorization technique. Other possible methods for inversion of 
the matrix are the SDV Decomposition or QR Cholesky Factorization (cf Bjorck (2009)).  
The error estimates for the equations (2.2.3) and (2.2.4) are in the form: 
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IAnInAIAIAAA n  t���� 0)(,1),)1()...(2)(()(                             (2.2.7) 

using hypergeometric function, Kargin and Kurt (2013), the power matrix series is given by 
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By geometric series, we see that  
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We compute the power ratio test on the matrix nA)(  in the form: 
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By taking norm of both sides of equation (2.2.11), we see that  
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The nearness to singularity of the matrix A  is explained by the ratio of largest eigenvalue 1O  
of A to the smallest eigenvalue kO  assuming they are ordered according to their 

magnitudes kOOO !!! ...21  counting their multiplicities of occurrences. A very high 
condition number shows that the given matrix is highly ill-conditioned. However, the 
dominant eigenvalue of A  can be computed by the Power method. In this way ill-
conditioning occurring in the coefficients of the respective matrices can be detailed. 

Furthermore, by computing the field of values of the matrix A  as the set of all possible 
Rayleigh Quotients defined by  

^ 1̀)(  � xRxAxXAF nT  we are able to compute the numerical radius in the form 

^ `)(max)( AFyyAr � . Following Bjorck (2009) the bound for the numerical radius of 

matrix A  is in the form 



LAGJMA-2021/01  UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS  196 

� �
222

1 AArA dd . 

In any case, for such a diagonalizable matrix UDVA   it follows that the 

bound � �
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A
Ar N

U
d  is best possible. 

3. RESULT 

3.1 Numerical Examples 

Example 3.1.1 

The hypergeometric matrix power series Jorda et al (1994) has applications in the treatments 
of Laguerre matrix polynomial, an important aspect in mathematical physics and is defined 
by the equation 
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where, O  is any complex number and in addition, 0)Re( !O . 

Example  3.1.2:  

Consider the Bessel function )(zIv   in terms of hypergeometric matrix series taken from 
Jordar and Cortis (1998) assuming that one can find a 0D    in the complex domain in the 
region of the negative real axis such that for all 0Dz� , we have 
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Equation (3.1.2) is an entire function of Q  in complex plane for the set of integers Z  . 

Because of equation (3.1.2) the matrix Bessel function is given by the equation 
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To obtain the perimeter of a polygon Nunemacher(1986) involving gamma function, let  
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and let np  be the perimeter of a polygon, it can be derived in the sense of Jordar and Cortis 
(1998) that for Nn�  ,  

)(,sin2 NnR
n

np nn �¸
¹
·

¨
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It holds that S2onp  as fon  for 1!0)1(   * . 

The factor 
S2
np

 by which the perimeter of a polygon exceeds the perimeter of the unit circle 

could be obtained in the form: � � � �043.1,098.1,180.1,461.1,, 65,43 |pppp .  Thus as 

fon , the size of 
S2
np

deceases in the unit circle.The conformal radius of the unit square 

(sides of length 2) is computed by the quantity 
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.2.3 THE PENDULUM PROBLEM 

Example3.2.1. The pendulum problem 

The Jacobi elliptic function has two simple poles and two simple zeros per cell while the 
Weierstrass elliptic function is one with a second order pole and two zeros per cell. 

By defining that WSieq   for 0)( !Wsn  the function 

¦
f

�f 

� 
n

inznn eqqzg 22

)1(),(                                                      (3.2.1) 

gives the theta Jacobi elliptic function. 

Because Mz �  where M  is a positive constant, it follows that nMnnizn eqeq 22
22

d , 

,...2,1 n  
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Thus the series expansion  
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defines the theta function of Jacobi elliptic integrals whose numerous applications range over 
mechanical engineering, Celestial mechanics and applied mathematics. 

Equation (3.2.2) is a periodic function with � � � �qzgqzg ,, S� . It can be proved 

that � � � �qzgeqqzg iz ,, 21 ��� �WS . 

We set ),(),(4 qzgqzg  . We obtain values for ),(),,(),,( 213 qzgqzgqzg  as follows 
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The differential equation Whittaker and Watson (1958),Okeke (1990) satisfies by the Jacobi 
elliptic function is in the form: 
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Setting as 
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),(

4

1
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 K  , we obtain in the form the differential equation 
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Next, by setting as 
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wherefrom, 
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The following identities Rainville(1960) hold true for the Jacobi elliptic integral: 
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The Jacobi elliptic function becomes the trigonometric and hyperbolic functions for 0 k ;  
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So that one has the Jacobi elliptic function of a second kind integral 
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The inverse sine integral defined by  
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expression. 

The period for the elliptic function is  
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To motivate our discussion in the right senses, consider the problem  
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Multiplying both sides of equation by 
D
T   in the form: 

0sin  �
DDDD
TTTT gL and then  using 

D
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d we have, 
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Solving this by integrating with respect to t leads to the expression 
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The negative sign was taken since Tsin  was initially negative. 

It is the aim of the paper to transform this into the Jacobi Elliptic function and obtain both 
lower and upper bounds for the problem. 
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using substitution of variable rvuv   
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sin 22 D
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The modulus of the Jacobian are K  and K4 and,  
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Our contribution to the existing problem is now to give the bound using hyper geometric 
function for the Jacobi elliptic integral. Firstly, the expression 
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If we use Anderson et al (1992) it holds that the upper bound for this was given in Alzer and 
Richards (2004) see the discussion also in Bao (2021) in the form 
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However, recent findings due to Bao (2021) showed that the double inequality holds verbatim 
for the Jacobi elliptic integral 
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Note that the approximation  ¸
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Following Yang and Tian (2017), Wank et al. (2020) the asymptotic formula for )(rK  is 
given in the form: 
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calls for further scrutiny in the analysis of results. 

Power series expansion Qi et al (2004), Jorda et a l. (1994) of the ratio 
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rf  in the form due 
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The jW  is the Wallis factor and is given by  jjj W
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Finally, we have that the inequality holds again and lends supports to the discussion.  
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4. DISCUSSION 

The paper reviewed the gamma function, the Beta function, hypergeometric series and their 
applications. We drew example of hypergeometric matrix power series for the Laguerre 
matrix polynomial. It was showed that the gamma matrix function is convergent with respect 
to power series ratio test. The nearness to singularity of the matrix A   with respect to the 
ratio of largest eigenvalue to the smallest eigenvalue was discussed which helps in the 
analysis of nature of condition number of the gamma matrix function. We related this to the 
class of Laguerre matrix polynomials and can be extended to the class of Bessel matrix 
functions. Drawing example from Jordan and Cortis (1998), the computation of perimeter 

)( np  of polygon involving gamma function by a factor 
S2
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 for which the perimeter exceeds 

the perimeter of a unit circle was also given. We discussed in details that the elliptic integral  
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This bound is convex and that the approximation ¸
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was pointed out that � � � �
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It should be noted that the following bounds mentioned in Wang et al (2020) and the 
references mentioned therein hold verbatim for the same bounds on )(rK  in the pendulum 
problem in the form: 
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Thus, there exists yet no most universally acceptable bound for the Jacobi elliptic functions 
as attested to by the various authors in the Literatures. Probabilistic analysis may be 
necessary for these various bounds as given by various authors. This may put further insights 
in the solution to the shape of a ‘’ Hanging Rope’’ problem in geodesy. 

It is left as an exercise for readers to choose most appropriate value of these bounds for )(rK . 

5. CONCLUSION 
 

The paper presented gamma, beta and hypergeometric functions for solving various 
mathematical and engineering problems. Various types of gamma functions have been given. 
The Stirlling series for the gamma function was discussed as a member of this class. The 
hypergeometric series for the matrix function was discussed and analyzed and its 
convergence in the terms of ratio test presented. We gave information on the condition 
number estimate for the matrix of gamma function in terms of ratio of largest eigenvalue to 
the smallest eigenvalue assuming their order of occurrence are in order of magnitudes where 
their multiplicities if any are counted so that their number is exact. We also discussed this in 
terms of ratio of radius of a matrix to the spectral radius of the matrix. The Bessel function in 
terms of hypergeometric function for approximating a polygon was given. The factor within  
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which the factor 
S2
np

 cannot exceed the perimeter of the unit circle was discussed in the 

form: 

� � � �043.1,098.1,180.1,461.1,, 65,43 |pppp .  Thus as fon , the size of 
S2
np

deceases in 

the unit circle. 

Detailed analysis is given for the pendulum problem based on the Jacobi elliptic integrals. 
The convexity for continuity function of the Jacobi integral and concavity of the inverse 
function have been discussed.Our contribution to the existing problem was to give the bound 
using hyper geometric function for the Jacobi elliptic integral. Firstly, the expression 
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applied mathematics where for instance, the                                   
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With this, various theoretical analytical bounds were presented and analyzed using ideas on 
the existing literatures. It is established that there exists yet no universally acceptable bounds 
in the existing Literature for the Jacobi elliptic integrals. 

The best choice for the optimal error bounds for the Jacobi elliptic integral with respect 
to the pendulum second order differential equation may be resolved through probabilistic 

optimization approach. It is also hoped to link these theoretical bounds of Jacobi elliptic 
integrals with Weierstrass elliptic functions Whittaker and Watson (1963) relative to theta 
functions. It is hoped that this will form our next line of thought in the next focus of research 
in the coming months. In particular, the gamma matrix logarithm problems will form a 
beacon upon which so many formulae could be obtained in our work. 
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