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THE GAMMA AND BETA MATRIX FUNCTION AND OTHER APPLICATIONS

STEPHEN E. UWAMUSI*

ABSTRACT. The paper presents Gamma and Beta functions and their
applications to real life problems. After relating the gamma function with
Euler’s infinite products, the Hermite series and Hypergeometric series, then

the computation of perimeter ( p, ) of a polygon involving gamma function by

n

2

sense of Jorda and Cortise. Application to Hermite-Laguerre polynomial and
multivariate calculus Hypergeometric matrix functions are presented with
convergence of gamma matrix using the Ratio Test. The procedure for
detecting nearness to singularity of the gamma matrix is described in terms of
condition number where -eigenvalues are ordered according to their
magnitudes. In addition, the Numerical radius of the Gamma matrix is
introduced which helps in the computation of a bound for the condition number
of the matrix. In particular, we paid special attention to the analysis of the
pendulum problem as a second order differential initial value problem wherein,
Jacobi elliptic integrals of first and second kinds play major roles. The bounds
for these elliptic integrals are discussed in details using some ideas in the
existing literatures. It is established in this paper that, there exists no
universally most acceptable bound for these Jacobi elliptic integrals as attested
to by various authors. It is therefore suggested in this paper that these bounds
may be subjected to probabilistic analysis in our future work. It is also hoped to
link these bounds for the Jacobi elliptic integrals with the Weierstrass elliptic
functions as well.

which a factor exceeds the perimeter of a unit circle is presented in the

1. INTRODUCTION

The first aim of this article is to answer in the affirmative that there exists [3].

1.1. The Gamma and Beta functions have several applications in scientific and engineering
practices other than statistical density functions in which the later were originally defined and
intended for use Kargin and Kurt (2013), Bao (2021). Gamma function has several uses in the
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representation of hypergeometric function and infinite products, Huang et al (2017). This
paper aims at a general framework for computing Gamma and Beta functions as well as
conformal radius applied on multivariate functional equations found in optimization theory
and complex integral calculus. We use the complex contour integrals as deriving basic
properties for the gamma function and relate this to inverse Laplace transform using ideas
due to Berg (2004), taking the orientation counterclockwise, the deformed Bromwich
contour. With deep knowledge of Laurent series, various residue theorems could be obtained
which are useful in the applications of gamma function and its allied functions.

Gamma, Beta, hypergeometric functions have major roles they play in the treatments and
analyses of swinging pendulum differential equation problems. For instance, Jacobi ( or
Legendre) elliptic integrals of both first and second kinds owe much of treatise to the gamma
and hypergeometric functions. Jacobi elliptic integrals of both first and second kinds have
various uses in engineering designs of rotating rods and a great impetus for expressing strong
solutions to mathematical differential equations.

Definition 1.1, Berg (2004): (Contour or path of complex integral). Let 77:[a,b] — C be an

oriented differentiable C’-curve and f:n" — C be continuous. By the contour (or path)

integral of f along 7 we mean the complex number

[£=]r@ar= ff(n(r))n/(z)dz

for which the orientation over Jordan arc is rectifiable.

In a simple language, the word contour mean a continuous parameterization 7:[a,b] — C

which is piecewise C’ continuous for which exists a partition

a=t, <t <..<t, , =b,suchthat, n, = 77|tk71,tk ,(k=1,2,...,n) are C’ parameterizations

[f= [ =3[=3] o Car

n mU.Un, k=17, k=l

The Cauchy’s integral theorem states that if f:D cC—C be holomorphic in a simply

connected domain D and given that 7 be a closed path in D, then

27z -z,

=== f L g

Cauchy’s integral theorem is the basis upon which many formulae for complex functions are
derived and their convergences analyzed. The Borel’s covering theorem for instance, asserts
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that if K be a closed and bounded subset ofC, and for every family { } of open sets in €

il

covering K such that K UE. , there are finitely many indices i, ,...,i, € I for which
iel

holds Kc F, UF, U..UF, .

We introduce the gamma function by the equation
I'(z) = J't“e”dt , (Re z>0) (1.1.1)
0

where, 17 = D8 and logreR (ot T2+ D =2lz, T =1, I'(n+1)=n!

The limiting Stirling’s series is defined by the equation

nl=.\/zn (n"e’"),(for n— o) (1.1.2)
The Spouge’s formula for gamma function Pugh (2004) is defined to be
R 1 Yoc,
[(z+1)=(z+a) 2e_("+“)(27z)2 ¢y + p (k)], (1.1.3)
=1 2t

1 1
where N =[a]—1,c, =1,c, is the residue of ['(z +1)z +a)_[”5]e”" (2z)2 at =~k .The a
is a free parameter suitable for proper adjustment in achieving good accuracy to the

approximation. More definitive in our presentation Pugh(2004) for the Stirling series is the
equation:

N
log{ z+1H z+k} (z+N+2jlog(z+N) (z+N)+
k=1

1 . B, ¢ B,()
510g27r+z 2/ —Iz 2 dx

T2j@j -+ NPT g2z N4x)" T g g

where, B,; are the Bernouli numbers obtained from the Maclaurin series for

" Z t’ To define the inverse gamma function Temme (1996), the method of Euler
e - j= =0 .

was 1n1tlated. Firstly define

152
F(Z) lim nn

e z(z+1)(z +2).(z +n) (1.1.5)

Then the inverse gamma function in view of Equation (1.1.5) is given in the form:
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1 :h.mn_Z
F(Z) n—o pl

in[2(z+1)(z+2).(z+n)], (Vz) (1.1.6)

where inw(.) denotes inverse function, and the poles are at z =0,—1,-2,..., such that the

reflection formula is therefore expressed in the form:

T()(1-z)=—"— rdy =z

sinzz  with 2

For ne N, the first three rational (fractional) form of gamma functions are well known,
Rainville (1960) in the form:

r(ml] _135.0n-1) oy

2 2"
r[n+ljzwr(lj’ (n:ljz,'_,)
3 3" 3
F(n +1j _1.59..(4n —3)%1)) (1=12...)
4 4" 4 .

Conversely, for negative integers their gamma functions Hannah (2013) are defined in the
form:

(k)= F(k + n)

C k(k+1D)(k+2)...(k +n—1)

,where, —n<k<-n+1, neN

Setting as ¢ =su into Equation (1.1.1) gives rise to the Laplace transform, Schmelzer and
Trefethen (2007) in the form:

F(s)=lf)=]guz’le”“du (1.1.7).

s 0

The recoverable part of Equation (1.1.7) as the byproduct in the calculation yields for the

inverse Laplace transform »*™' . This is given by the equation

uzfl :3I(F(s))zzimj'emF(k)dk:%m.[@dk (118)

n

The path 7 is the Jordan arc taken counterclockwise the deformed Bromwich contour.

Now, assuming instead, we set s = ku in Equation (1.1.7) this gives

s =L_jeswds , (1.1.9)
2m . s‘u
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where

L:L' s ce'ds (1.1.10)
I'(z) 2my.

Equations (1.1.9) and (1.1.10) are often computed using suitable trapezoid quadrature rule
along the contour, the path traced out by the complex integrals.

The link between gamma function and Euler infinite products is presented. Thus, the Euler’s
infinite product, for z #0,—1,—2,..., is defined in the form:

! [1+1)
r@=-[]—* (1.1.11)

< 1<n<ow 1+ E

n

Using Holder’s inequality e.g., (1< p <o) and 1 + 1 =1 , there follows:
P qa

1
1 - -

r(i R g} _ I(wef (e an < (Tt“e’dtjpﬁty'e’dtJ; () ()

p 0 0

. 1 1 . .
If we set, instead thatA=— and, 1-4=—, the convexity of logI'(z) is expressed
p q

following from convexity of
log T(Az +(1-4)y)< Alog[(z)+ (1-2)log (). (1.1.12)

We give the respective Euler’s and Gauss’ limiting formula in their equivalent forms for
gamma function similar to equation ( 1.1.5) in their forms:Euler’s :

n

F(z+l):1i£1o[(n+l)ZHL}:1im nl(n+1) (1.1.13)

Liitz] e (g1 z+2) (g +n)

Gauss’ :

Z z

| |
F(Z) —lim nn nn

= lim
now 7(z+1)(z + 2)(Z +n) o (Z)n+1

(1.1.14)

for (Z)nﬂ =z2(z+1)(z+2)...z+n) .
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The categorization of this paper is as follows: Section 2 discusses the Beta function and its
associated conformal radius. We link the gamma function with regularity spaces of Hankel
functions and the hypergeometric function. The matrix gamma and Beta functions are
presented for the multivariate functional calculus. We give further information on the
condition number of a gamma matrix which can be computed as a ratio of Numerical radius
of a matrix to the spectral radius of the matrix. Condition for nearness to singularity is
discussed in terms of ratio of largest eigenvalue to the smallest eigenvalue assuming the
eigenvalues are ordered according to their magnitudes and counting their multiplicities (if
any) so that the number of eigenvalues is exact. We give numerical example demonstrating
the discussed formulae in section3. Useful bounds for the Jacobi elliptic integral are given
for the pendulum problem as a second order differential equation Initial Value problem using
gamma and hypergeometric functions. Section 4 gives the discussions aspect of results and
analysis in the paper. In section 5, we give conclusion based on the findings of our numerical
examples with these methods.

2. MATERIALS AND METHODS
The following methods and materials shall be adopted for our approach.
2.1The Beta Function and Associated Conformal Radius

We define the Euler Beta function by the equation

ey du _T(@T(B) _1
B(a,,B)—}[u (1—u) - " Tash) (B(a,l)—;) 2.1.1)

Here a >0, and f>0with B(a,f) is a function of o and f. I'(a)=ad (a-1),
L(p) = prp-1).

Integration by part applied on Equation (2.1.1) gives that

Ba.p)= LV g1, 5-1) 2.12)
(04
Calpt 1 a+p)
B(a+1,ﬂ+1)—(a+ﬂ)!—(a+ﬂ+l)!( . j (2.1.3)

We link the hyper geometric function with the gamma function. Firstly, we give the Hankel
contour integral. As usual, consider the integral given by

1,=[(=0)"e"ar, (2.1.4)

n
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We consider a positive oriented contour at the point x+i0", (x > 0) above the real x -axis

which encircles the coordinate origin in counterclockwise manner Pugh (2004) that returns to

the point x —i0" below the x-axis by fixing the branch of the multivalued function ()"

Then define that

(1) =e((z=1)In(~¢)), where In(~¢) is purely real on the negative real axis and argument
on n being —z <arg(—t)< .

The radius being denoted by psuch that arg(—7)=+7 and (—7)"" =™ Ut on each
segment of the contour.

Using (—7)= pe?, and writing that

1,7 (2) = Te—iﬂ(z—l)tz—le—tdt+ ]['peiel-(peia )z_lefp(costgﬂ'sinﬁ)de_i_jieiﬂ(zfl)tzfleftdt S

= 2isin(7zz)J‘ t“ledt +ip® I p(cos @ +isin O)dr (2.1.5)

P
As p—0 for Rez >0, then /,(z) = —2isin(7zz).|.tz’le”dt
0

We take the limit forx — o and obtained

I'(z)= —'; j (1) e dr (2.1.6)

2isin(7z) "

Equation (2.1.6) is the Hankel’s representation of gamma function which is holomorphic
except at the points z =0,£1,%+2, ...

The hypergeometric series with variable z is defined to be the equation

o0 }’l

F(a,b,c,z) Z (2.1.7)

n=

Then, (a), =1(a), =a, (a), =a(a+n),

(@ zatarDfarn=h= F(ra(Z)n)’ M), =), = F(;)(Z)n) (), = r(&;”’ .

The a,b,c are arbitrary complex numbers. Therefore, the hypergeometric series is in the
form
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F(a,b,c,z)ziAnz” (Where, A, M) (2.1.8)

= (c), n!

The convergence of hypergeometric series in Equation ( 2.1.8) is demonstrated by the ratio
test

n+l
lim Al = lim (n+a)(n+b)| |— |z| .This is absolutely convergent inside the unit circle
H°°| A" > (n+c)n+1)
|z| <.

We give two commonly used cases as shown below:

Case 1: b=c, given by

Fla.b.b,2)=3 (@), ., —(l-2)" (2.1.9)

n=0 I’l'

Settlng a:l’ gives F(l,b,b,Z) :ZZH :IL_

n=0 -

Case 2: b:a+%,c:—

F(a,%+a,%,z2)= [(1+z)”“ —(1—z)““] (2.1.10)

2°(1-2a)
. . . 33 , 5 1
From Equation (2.1.10), by letting @ =1,b = ¢ would give that F(I’E’E’ )= (1 -z ) .The

duplicative formula is in the form:

T(a+ n)F[a + ; + ”jr[zj I'(3a+2n)

A = - (2.1.11)

\ F(a)l"(a i ;jr(; . ”) | T@a)n+1y

It beholds that

1 3 = T(Ra—1+2n+1) .
F s R4
(a 275 ] z(2a-1) Z; ra—1)Gnr1)
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2.2 Applications to Multivariate analysis: The role of Gamma and Beta matrix
functions

We implement Hermite polynomials and Hypergeometric matrix function. Writing the
Hermite polynomials in the sense of Kargin and Kurt (2013) we have that

8 i i
Hn(x,A)sz;( l)kzlglng/zzg!) , n>0 2.2.1)

This satisfies the three term recurrence
H, (x,A)=xv2A H, ,(x,A)-2(n-1)H, ,(x,A), n>1, (2.2.2)

H (x,A)=0, H,(x,A)=1, where Ais a real or complex square matrix, I is an identity

matrix.

To proceed further, we noted that for a real matrix A and for Re(z) > 0 where z € o(A), and
given that n > 1, Jodar and Cortes (1998) we have the equations

E(zx)=[(1=s5)"s""ds = n[z(z +1)...c+ )] (2.2.3)

g(z)= :f(l =3y st ds = i [A(A+ I)...(A+nD)] (2.2.4)
0 n

To compute the inverse matrix for A, Golub and Van-Loan (1989), Horn and Johnson (1993)
we adopt the Gaussian-LU factorization technique. Other possible methods for inversion of
the matrix are the SDV Decomposition or QR Cholesky Factorization (cf Bjorck (2009)).
The error estimates for the equations (2.2.3) and (2.2.4) are in the form:

T(A)—n!n* [AA+D)..(A+nD)] " =

Te"t""dt - j[l - %jnt""dt = j{e"’ - (1 - %]n }“Hdt + Ie“’tA_Idt

0 0 0
The term Je"tA_[dt —0as n— o,
n

By signifying with notation
AA+D) ... A+(n-DDT ' (A+nl)=T"'(A), n>1 (2.2.5)

(2), =2z +1)z+2)...c+n-1), n>1, (2), =1, (2.2.6)
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(A), = A(A+I)A+2D)...A+(n=DI), n>1, (A), =1 (2.2.7)

using hypergeometric function, Kargin and Kurt (2013), the power matrix series is given by

oFi(— A=Y [(4),]" = (2.2.8)

n=0 n ‘

We thus give

(A+nl)" = {n(% + Iﬂ_l = %(% - Ij_l (2.2.9)

By geometric series, we see that

A j_l H 1 n
A7 < - (2.2.10)
[G AT A

n

We compute the power ratio test on the matrix (A), in the form:

Kmmrfwﬂ_aAwm*_{n+q @2.11)
()] <"+t nel T neD -

By taking norm of both sides of equation (2.2.11), we see that

” [(A),.]"z""n! ” |2|n .
), 2 e 0|~ nme @A) ~ . (2.2.12)

The nearness to singularity of the matrix A is explained by the ratio of largest eigenvalue 4,
of Ato the smallest eigenvalue A, assuming they are ordered according to their
magnitudes 4, > 4, >...> A, counting their multiplicities of occurrences. A very high

condition number shows that the given matrix is highly ill-conditioned. However, the
dominant eigenvalue of A can be computed by the Power method. In this way ill-
conditioning occurring in the coefficients of the respective matrices can be detailed.

Furthermore, by computing the field of values of the matrix A as the set of all possible
Rayleigh Quotients defined by

F(A) = {X T Ax ‘x e R"|x|= 1} we are able to compute the numerical radius in the form

r(A) :maxﬂ y|yeF (A)}. Following Bjorck (2009) the bound for the numerical radius of

matrix A is in the form
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1
Ll < ra)<)al,

In any case, for such a diagonalizable matrix A=UDV it follows that the

bound r(4) < k(U) is best possible.

p(A)

3. RESULT
3.1 Numerical Examples
Example 3.1.1

The hypergeometric matrix power series Jorda et al (1994) has applications in the treatments
of Laguerre matrix polynomial, an important aspect in mathematical physics and is defined
by the equation

L) = g—k(!_(i)_i)! [(A+D)]"x* (3.1.1)

where, A is any complex number and in addition, Re(1) > 0.
Example 3.1.2:

Consider the Bessel function 7 (z) in terms of hypergeometric matrix series taken from
Jordar and Cortis (1998) assuming that one can find a D, in the complex domain in the

region of the negative real axis such that for all z € D, we have

(Zjv+2k
1,(2)= Z 2

STk +D)C(k+v+1)°

2| < oo, [arg(z)| <7 (3.1.2)

Equation (3.1.2) is an entire function of v in complex plane for the set of integers Z .

Because of equation (3.1.2) the matrix Bessel function is given by the equation

D) Ot (s A)@
IA(Z):; T(k+1) - Ej 2 rk+1)

(3.1.3)

To obtain the perimeter of a polygon Nunemacher(1986) involving gamma function, let

e

n
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and let p,  be the perimeter of a polygon, it can be derived in the sense of Jordar and Cortis
(1998) that forne N ,

. =2nsin[1]Rn . (neN), (3.1.5)
n
with
v T
R, == [u Fl—u)midu=——T2 N 51 (33 1> o) (3.1.6)
§ -
nl]1——
n

It holds that p, — 27 as n — oo for (1) =0!=1.

The factor Py by which the perimeter of a polygon exceeds the perimeter of the unit circle
T

could be obtained in the form:(ps,p, ps,pe)~(1.461,1.180, 1.098, 1.043). Thus as

P
2
(sides of length 2) is computed by the quantity

2
e
— =4t =

Pa 5
2

n — oo, the size of deceases in the unit circle.The conformal radius of the unit square

1.078705. (3.1.7)

3.2.THE PENDULUM PROBLEM
Example3.2.1. The pendulum problem

The Jacobi elliptic function has two simple poles and two simple zeros per cell while the
Weierstrass elliptic function is one with a second order pole and two zeros per cell.

By defining that ¢ =™ for sn(z) >0 the function
8(z.q)= 2 (-1)"q" ™ (3:2.1)
gives the theta Jacobi elliptic function.

2 .
2
nemz

2
n 2nM
S|q| e

Because |z|<M where M is a positive constant, it follows that |g

b

n=12,...
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Thus the series expansion

i(_l)nqnzeb‘nz —14+ i(_l)n [qn2 (eZinz 4 o2 )]
n=—o 1

B (3.2.2)
=1+ 22(—1)" q"2 cos2nz
1

defines the theta function of Jacobi elliptic integrals whose numerous applications range over
mechanical engineering, Celestial mechanics and applied mathematics.

Equation (3.2.2) is a periodic function Withg(z,q)zg(z+7r,q). It can be proved
-1 _-2iz
e

thatg(z+m,q)=—q g(Z,f])-

We set g,(z,q) = g(z,q) . We obtain values for g,(z,9),8,(z,9),8,(z,q) as follows

8:(z,9) = g(z +%,q) =1+ ZZq"2 cos2nz (3.2.3)

n=1

. ﬂ ®© n+l ’
gl(z,qr)=—ie[~ ! jg[u%,qJ =2 (—1)"q( 2] sin(2n +1)z (3.2.4)
n=0

o ()
gz(z,q)z gl(z+§,qj=22q[ 2) cos(2n+1)z 3.2.5)
n=0
The differential equation Whittaker and Watson (1958),0keke (1990) satisfies by the Jacobi
elliptic function is in the form:

d [ ¢,(z9) 2] £:(2,9)8;(2,9)
— |2t e (0,9) : 3.2.6
dzLu(z,q)} [g 0.0) ] 84(2,9)-84(2,9) (320

2,(z2,9)

Setting as 77 =
84(z,9)

, we obtain in the form the differential equation

(cjl—zy —[2,(0,9)-1?22(0,4)|[¢3(0.4)-n*£2(0,9)] (3.2.7)

Next, by setting as

3(0161)

}.77 and x = z(g3 (O, q))2 , then one obtains that

<

Il
1
oo |09
)
—
=
Q
SN—

(%j —i-y*)i-ry?) (328)
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wherefrom,

(3.2.9)

The following identities Rainville(1960) hold true for the Jacobi elliptic integral:

Snu+Cnu=1 ,
dnu+k* sn*u=1

Cn*u+(1-k*)Sn’u =dn’u

The Jacobi elliptic function becomes the trigonometric and hyperbolic functions for k =0;
Snu =sinu

Cnu = cosu, dnu =1‘ For k =1:Snu = tanhu, Cnu = dnu = sechu'

So that one has the Jacobi elliptic function of a second kind integral

xzj ld” =5,y (3.2.10)
O(l—uz)g(l—rzuz)E
ﬂ_i _ _ 21— 202) = 1 o2 _ 22 —
dr dx " dvidy W=yt =ty == Sutafi=rty? = Cnada (3.2.11)
d

-1
—(dnx) = i\/1 -r’Sn’x = %(1 - rzSnzx)7 = 2r2(Snanx)dnx =n-r’SnCx (3.2.12)

dx dx

The inverse sine integral defined by

.o r du r dt . .
sin” y= I wherefrom, x= —j for u=-—t in the given
o V1—u’ o A=) (1=rt?)
expression.

The period for the elliptic function is

~ do

K(r)zj. dt
o (=2 )1-r22) o V1=r7sin?0

To motivate our discussion in the right senses, consider the problem

— oy

,(where t =sinf.) (3.2.13)

LO+gsin0=0,000)=c, 000)=0 (3.2.14)
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Multiplying both sides of equation by 0 in the form:

LOO+gsn00=0
2

dt 2 dt

Solving this by integrating with respect to t leads to the expression

0=-2 5(—sm2§+smzﬁj
L 2 2

The negative sign was taken since sin € was initially negative.

and then using di — Owe have,
t

200

(3.2.15)

It is the aim of the paper to transform this into the Jacobi Elliptic function and obtain both

lower and upper bounds for the problem.

By writing as

b2 6 d
i

1
} szﬁ_smzﬁ ’
2 2

2rdu
—_—.

(1 —rv2)5

. o . .  .u
using substitution of variable v = sin > sin 5= rv, then dv =

Therefore,

1

(j _—j dv 1 j =27{£]22F1(l,1,1,r2
)(IVV]E 011’811’129 8 2°2

L
r’ =sin® =
2

where,

The modulus of the Jacobian are K and 4K and,

o

1

2
—j r+ K .
L

Sn7'(x) = —(

(3.2.16)

j , (3.2.17)

(3.2.18)
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Our contribution to the existing problem is now to give the bound using hyper geometric
function for the Jacobi elliptic integral. Firstly, the expression
— (a n)(b n)
Fla,b;c;s)= —( s,
( ) ”Z:(; (c,n) n!

applied mathematics where for instance, the

<1 1is well known in the field of complex analysis and

N

(a,n)=a(a+1)(a+2)..(a+n-1 =10+
I'(a)
(n = 1,2,) .
... 2 40 .
Thus the elliptic integral K(r) = I is bounded by

0\/1—}"2 si1126’

K(r)< log(l + \/:TJ - (logS —%) (1-r) (3.2.19)

If we use Anderson et al (1992) it holds that the upper bound for this was given in Alzer and
Richards (2004) see the discussion also in Bao (2021) in the form

£16—510g(1—r2)

2 16+ (51 16" (0<r<1). (3.2.20)

K(r)<

However, recent findings due to Bao (2021) showed that the double inequality holds verbatim
for the Jacobi elliptic integral

all6-slog(1-r2) -2+ (B-a)?}* |, zli6-5logl-r)|+200-1r>
max -0r-, —Ar
32+2(57 -16)r’ 32+2(57 —16)r’

<K<

min 7r[l6—510g(1—r2)]—20¢r4 o 77[16—510g(1—r2)+25r2]_/1r2
32+2(57 -16)* T 3242057 -16)°

(3.2.21)

Note that the approximation ]n[l+—/j is actually better than lni/ . This investigation
r r

K(r)
ln(I + 4/j
r

K(r) < m(1 + i/j —(m 5 —%) (1-r) (3.2.22)

holds for the monotonicity of the ratio wherefrom,
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Following Yang and Tian (2017), Wank et al. (2020) the asymptotic formula for K(r) is

given in the form:

- . K . .
Kiry=2F l,l,l,r2 z]ni/ as r—1 and r' =+1-r>. The ratio (r) is a strictly
2 22 r c
In—
-

decreasing function if and only if 0 <¢c <4 and ¢ €(0,4]. Now it can be derived in a similar

manner that ¢(r): j\i—;L is also strictly convex on the interval (0,1) provided that
o )

c= eg .Also the L is a concave function on the interval (0,1) .This means that the inverse

o(r)

of its second derivative is negative We seek further information Yang and Tian (2017), Bao
(2021) on the functions

f(r)= F(%;%;l;rj and h(r)= ln(l + 4 J where, r er? €(0,1). Differentiating

iy Lpf3.3 _1(1 11

f(r)_4F(2’2’2’FJ_4[1—er[2’2’2rJ
_ :2(4—\/1—1")
4+\1-r.(1-r) (5+r)1-7)

, (15+r)F[1;1;2;rj
f (r): 22
n' (r) gla—vi—r)

The ratio (3.2.23)

calls for further scrutiny in the analysis of results.

£

" in the form due
r

Power series expansion Qi et al (2004), Jorda ef a . (1994) of the ratio

to equation (3.2.23) gives the following result:

© 2 .
/ 15+Z(16]. 526].+15)Wizr2
ffin_ A Qj=DG+D)

= 3.2.24




203 STEPHENE. UWAMUSI

1
rq+ l) (] + j
The W, is the Wallis factor and is given by W, = 2 W = W

2 Jj+l . J
o)
2 2
Summing up these, it follows that
]nl+i/ inf14+% 1+ 4 ln1+4
r r <l r/ N (1+4\/_
K(r) K(r'y " 2| K(r) K(r') X( \/*

N

Finally, we have that the inequality holds again and lends supports to the discussion.

2In5 1 1n(1+4/j 2In5 2(2 1
2ns 1L ) <_(___1nsj
/4 r’ K(r) /4 7\5 4

4. DISCUSSION

The paper reviewed the gamma function, the Beta function, hypergeometric series and their
applications. We drew example of hypergeometric matrix power series for the Laguerre
matrix polynomial. It was showed that the gamma matrix function is convergent with respect
to power series ratio test. The nearness to singularity of the matrix A with respect to the
ratio of largest eigenvalue to the smallest eigenvalue was discussed which helps in the
analysis of nature of condition number of the gamma matrix function. We related this to the
class of Laguerre matrix polynomials and can be extended to the class of Bessel matrix
functions. Drawing example from Jordan and Cortis (1998), the computation of perimeter

n

2
the perimeter of a unit circle was also given. We discussed in details that the elliptic integral

T

K(r)zj- do

oV1—r’sin’ @

(p,) of polygon involving gamma function by a factor for which the perimeter exceeds

for the pendulum problem is bounded by the inequality

K(r)< log[1+ 4 ]—[logS—%j (l—r) . 4.1
1-r?
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This bound is convex and that the approximation ln(l + i/j is actually better than In i/ At
r r

. K . . . .
was pointed out that ¢(r) = J\/—;L is also strictly concave on the interval (0,1) provided

=)

It should be noted that the following bounds mentioned in Wang et al (2020) and the
references mentioned therein hold verbatim for the same bounds on K(r) in the pendulum

4
that c =e?3.

problem in the form:

ﬂtan"l( 1-r! J
2 r/
K(r)< \/— ; 4.2)

r2+r =1

K(r) < 110g(1 h rj; (4.3)
4r

1-r

K(r) < aNrt —=32r* +32
~s2lfa-ry)

(4.4)

Thus, there exists yet no most universally acceptable bound for the Jacobi elliptic functions
as attested to by the various authors in the Literatures. Probabilistic analysis may be
necessary for these various bounds as given by various authors. This may put further insights
in the solution to the shape of a <> Hanging Rope’” problem in geodesy.

It is left as an exercise for readers to choose most appropriate value of these bounds for K(r).
5. CONCLUSION

The paper presented gamma, beta and hypergeometric functions for solving various
mathematical and engineering problems. Various types of gamma functions have been given.
The Stirlling series for the gamma function was discussed as a member of this class. The
hypergeometric series for the matrix function was discussed and analyzed and its
convergence in the terms of ratio test presented. We gave information on the condition
number estimate for the matrix of gamma function in terms of ratio of largest eigenvalue to
the smallest eigenvalue assuming their order of occurrence are in order of magnitudes where
their multiplicities if any are counted so that their number is exact. We also discussed this in
terms of ratio of radius of a matrix to the spectral radius of the matrix. The Bessel function in
terms of hypergeometric function for approximating a polygon was given. The factor within
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which the factor 5” cannot exceed the perimeter of the unit circle was discussed in the
T

form:

(p3,p4 ps,pG)z (1 461, 1.180, 1.098, 1.043). Thus as n — o, the size of %deceases in
’ Vs

the unit circle.

Detailed analysis is given for the pendulum problem based on the Jacobi elliptic integrals.
The convexity for continuity function of the Jacobi integral and concavity of the inverse
function have been discussed.Our contribution to the existing problem was to give the bound
using hyper geometric function for the Jacobi elliptic integral. Firstly, the expression
— (a n)(b n)
Fla,b;c;s)= —( s,
( ) ”Z:;‘ (c,n) n!

applied mathematics where for instance, the

s|<1 is well known in the field of complex analysis and

I'(n+a)

(a, n) =a(a+1)(a+2)...(a+n-1)= @

With this, various theoretical analytical bounds were presented and analyzed using ideas on
the existing literatures. It is established that there exists yet no universally acceptable bounds
in the existing Literature for the Jacobi elliptic integrals.

The best choice for the optimal error bounds for the Jacobi elliptic integral with respect
to the pendulum second order differential equation may be resolved through probabilistic

optimization approach. It is also hoped to link these theoretical bounds of Jacobi elliptic
integrals with Weierstrass elliptic functions Whittaker and Watson (1963) relative to theta
functions. It is hoped that this will form our next line of thought in the next focus of research
in the coming months. In particular, the gamma matrix logarithm problems will form a
beacon upon which so many formulae could be obtained in our work.
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