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ABSTRACT.  The continued reoccurrences of Ebola virus disease (EVD) 
among human population has given a great cause for concern. This paper 
studied the impact of vaccination on the transmission dynamics of EVD 
by constructing a deterministic model. A threshold quantity called basic 
reproduction number, 𝑅0, is computed and used to discuss the persistent 
and eradication of disease in the population. The local and global stability 
of the disease-free equilibrium are established to show the asymptotic 
behavior of the infection. The stability analysis shown that the disease–
free equilibrium is locally and globally asymptotically stable whenever 
𝑅0 < 1 and unstable whenever 𝑅0 > 1.  Furthermore, sensitivity analysis 
is carried out to ascertain the model parameters that have high impact on 
𝑅0 for intervention planning. The sensitivity result shown that vaccination 
rate has high impact compare on 𝑅0, as the rate of vaccination increases, 
the disease reduces in the population. The numerical simulations of the 
model are carried out using fourth order Runge–Kutta scheme in order to 
investigate the dynamics of EVD in the presence of vaccination. The 
result shown the important of vaccination in eliminating EVD in the 
population. It indicates that if a good proportion of the population are 
vaccinated with a vaccine that does not wane off on time, it will reduce 
the number of infected individuals in the population and this will help to 
eradication of EVD in the population.  

  

1. INTRODUCTION 
 

Ebola virus disease (EVD) is a severe, often fatal illness with death rate of up to 
90% [1]. The disease is caused by Ebola virus which is named after a river in 
Democratic Republic of Congo (DRC) in Africa where it originated [2]. It is a 
ribonucleic acid virus family with no known reservoir, has an incubation period of 2 
to 21 days and infectious period of 4 to 10 days [3]. Ebola virus has five strains – 
Zaire Ebola virus, Budinbugyo Ebola virus, Sudan Ebola virus, Tai Forest Ebola Virus 
and Reston Ebola virus [4].    
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Exposure to Ebola virus occurs when one has direct contact with the blood or 
secretions from an infected person. It can be also contracted through contact with 
contaminated objects such as needles. The virus can persist up to eight weeks in the 
semen of survivors of EVD and could be transmitted through sexual intercourse [5]. 
Therefore, it has been advocated that men who have recovered from Ebola virus 
disease should abstain from sex until they are certified safe by physicians [6]. Ebola 
virus is also present in the breast milk of women who recovered from the disease. It 
is recommended that such women should not breastfeed until they are declared safe 
by health officials [7]. The Ebola epidemic recurred in 2018 in the DRC, making it 
the 9th outbreak and next in severity and scoped to the 2014 to 2016 West African 
Ebola epidemic [2]. Countries affected during the West African Ebola epidemics 
included Guinea, Liberia, Nigeria, Senegal, Sierra Leone, Spain and United States of 
America. 4,555 deaths recorded at the end of October 2014 [8]. Nigeria had her own 
share on July 20, 2014 and by October 20, 2014, she was certified Ebola-free [5]. 
According to the WHO [9], there was 3,233 confirmed cases with a total of 2,217 
deaths in the DRC just within 21 days during the 9th epidemic. The 10th outbreak also 
struck in 2020 and new outbreaks are expected in the DRC given the existence of the 
virus in an animal reservoir in many points of the country [10]. Hence, there is need 
for aggressive measures to be taken to end Ebola epidemics before they spiral out of 
control and seriously deplete human population. 

There is no certified cure for Ebola yet. Even the experimental drug-Zmapp which 
used to be effective is now said to be less effective [11]. This was discovered during 
the August 2018 Ebola outbreak in the DRC when about 50% of the patients given 
Zmapp died. For now, Ebola is mainly controlled through supportive care. This 
includes fluid and electrolyte replacement, blood pressure and blood gas monitoring, 
pain management, antibody and anti-malaria drug as needed [12]. Health experts have 
suggested many preventive measures including personal hygiene, infection control 
practices, public health education, and avoidance of hand shaking and administration 
of vaccination to the susceptible population [13 -16].  

Mathematical models have been developed to figure out the interventions that can 
eradicate EVD. For instance, Legrand et al. [17] used a modified SEIR to showed that 
rapid implementation of barrier nursing within isolation ward and prompt 
hospitalization will reduce EVD within the hospital and the community. Rivers et al. 
[18] evaluated the impact of improved infection control and hypothetical 
pharmaceutical intervention on EVD. Harrison et al. [19] used a measles’ SEIR pre – 
vaccination model with vital dynamics to study the 2014 Ebola outbreaks in Guinea, 
Liberia and Sierra – Leone. Okeke et al. [20] focused on diagnostic testing and 
ascertained that a decrease in the extent of the outbreak can be achieved when all 
feverish patients or health-care workers are tested on time. Camacho et al. [21] 
proposed that changes in behaviour of the people made a substantial reduction in both 
hospitals to community and within community transmission. Rachah and Torres [22] 
discussed the importance of optimal control strategy on the dynamics of EVD using 
SIR models with and without vaccination. In addition, Atangana and Goufo [23] 
developed an SIRD model and found that the population could die out in a very short 
period of time if there is no good prevention for a small portion of infected individuals. 
Webb et al. [24] modified a SEIR model for Ebola virus by incorporating contact  
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tracing term in their model while Li et al. [25] proposed a susceptible-exposed-
infected-treatment (SEIT) model of Ebola virus transmission. Madubueze et al. [14] 
explored a mathematical model for EVD with contact tracing and quarantine 
measures. Their results showed that the implementation of contact tracing measure 
will eradicate EVD transmission in the population. Yarus [26] used an SIRD model 
to study the Ebola-Zaire dynamics, where D is number of dead cases. They suggest 
an inclusion of vaccination as control measure in the model.  Based on the suggestion, 
this study extends the work by Yarus [26] by incorporating vaccination in the model 
since there is no approved medication against EVD and much works have not been 
done for the impact of vaccination for EVD using mathematical modelling approach. 
Although, Rachah and Torres [22], Brettin et al. [27], Area et al. [28] and Tulu et al. 
[29] considered vaccination in their work but the proportion of the population to 
vaccinated and vaccine wane off are not simulated and discussed in details.  Since the 
whole population cannot be vaccine and vaccine wane off is possible, this study 
therefore consider vaccination as control measure in eradicating the spread EVD. It 
will find out how many proportion of population will be vaccine and how long people 
vaccinated are protected.  

The rest of this work is organized as follows: In Section 2, we present the model 
formulation of Ebola with vaccination as a control strategy. Mathematical analysis of 
EVD model with the stability and sensitivity analyses of the model parameters are 
presented in Section 3. The numerical simulation was done in Section 4 while the 
result and discussion are presented in Section 5 and finally the conclusion is in Section 
6.   

 
2. MATERIALS AND METHODS 

 
2.1 Model Formation. The model considered in this study is an extension of the work 
by Yarus [26] with additional assumption that the susceptible population is vaccinated 
against the virus. The total population, 𝑁(𝑡), at any time, 𝑡, is subdivided into 
Susceptible individuals, 𝑆(𝑡), Infected individuals, 𝐼(𝑡), Vaccinated individuals, 
𝑉(𝑡), Recovered Individuals, 𝑅(𝑡) and Dead individuals, 𝐷(𝑡). The susceptible 
individuals acquire the infection through contact with the infected individuals at a 
rate, 𝑎 and move to the infected class while the vaccination rate, 𝜐 ∈ [0,1], reduces 
the transmission rate, 𝑎.  A proportion, 𝛿, of the susceptible individuals are vaccinated 
at a rate, 𝜐, and progress to the vaccinated individuals, 𝑉(𝑡) where the vaccine wanes 
at a rate, 𝜙. Infected individuals recover at a rate, 𝑏, or died of Ebola virus at a rate, 
𝑒. We assumed that there is no permanent immunity for those that recovered of the 
virus. Thus, 𝑐 is the rate at which the recovered individuals become susceptible again. 
We assume that the study is for short period as in the case of Ebola virus outbreak in 
Nigeria year, 2014. Therefore, natural death rate and birth rate are negligible in this 
study.  The flow diagram of the model formulation is given in Figure 1.  
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FIGURE 1. Systematic Diagram of the EVD Model. 

 
With the description of the model, additional assumptions to the model of Yarus [26] 
and the systematic diagram in Figure 1, we present the model for this study as a system 
of differential equations 

 
𝑑𝑆
𝑑𝑡 
=  −(1 − 𝜈)𝑎𝑆𝐼 − 𝜈𝛿𝑆 +  𝜙𝑉 + 𝑐𝑅

𝑑𝐼
𝑑𝑡
= (1 −  𝜈)𝑎𝑆𝐼 − 𝑏𝐼 − 𝑒𝐼                    

𝑑𝑉 (𝑡)
𝑑𝑡

= 𝜈𝛿𝑆 −  𝜙𝑉                                    
𝑑𝑅 (𝑡)
𝑑𝑡

= 𝑏𝐼 − 𝑐𝑅                                         
𝑑𝐷(𝑡)
𝑑𝑡

= 𝑒𝐼                                                    }
 
 
 

 
 
 

    (2.1) 

 
with  𝑆(0) > 0, 𝐼(0) ≥ 0, 𝑉(0) ≥ 0, 𝑅(0) ≥ 0 and 𝐷(0) ≥ 0 as the initial conditions 
and 𝑆 + 𝐼 + 𝑉 + 𝑅 + 𝐷 = 𝑁. Note that 𝑑𝑆

𝑑𝑡 
+ 𝑑𝐼
𝑑𝑡 
+ 𝑑𝑉
𝑑𝑡 
+ 𝑑𝑅
𝑑𝑡 
+ 𝑑𝐷

𝑑𝑡 
= 𝑑𝑁

𝑑𝑡 
= 0 which 

implies that 𝑁 is a constant population.  
 
2.2. Model analysis. For model analysis, consider the 𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡) and 𝑅(𝑡) 
subpopulations since 𝐷(𝑡) subpopulation will be determine from the other 
subpopulations, that is 𝐷 = 𝑁 − 𝑆 − 𝐼 − 𝑉 − 𝑅.  

 
2..2.1. Basic Reproduction number, 𝑹𝟎.  Basic reproduction number, 𝑅0, is a 
threshold parameter in mathematical epidemiology. It is the average number of 
secondary infections caused by a single infective person introduced in an entirely 
susceptible population during an entire infectious period. 𝑅0 is said to measure the 
average number of secondary infections (cases) generated by a primary case in mostly 
susceptible individuals and is also an estimate of epidemic growth at the start of the 
outbreak if everyone is susceptible [30]. It has implications for disease elimination 
and persistence in the population. 𝑅0 > 1 implies that the infection persists in the 
population while 𝑅0 < 1  means the disappearance of the disease from the population. 
Basic Reproductive Number, 𝑅0, of system (2.1) is computed using the next 
generation method demonstrated in van den Driessche and Watmough [31] at disease-
free equilibrium state. 

 
The disease-free equilibrium, 𝐸0, of the system (2.1) is given by 
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𝐸0 = (𝑆0, 0,

𝜈𝛿𝑆0
𝜙
, 0).          (2.2) 

Let 𝑋 be vector of infected classes, such as Infected Individuals class in the study, 𝐹 
be vector of new infection rates of the infected classes, and 𝑈 be vector of all other 
rates of the infected classes (not new infection rates).  
 
Now, let  𝑋 = 𝐼(𝑡), 𝐹(𝑋) = (1 − 𝛿)𝑎𝑆𝐼,  𝑈(𝑋) = (𝑏 + 𝑒)𝐼  and  𝑑𝐼

𝑑𝑡
= F(X) − V(X). 

Taking the Jacobian of 𝐹 and 𝑈 around the disease-free equilibrium, 𝐸0, gives  ℱ =
𝜕𝐹
𝜕𝑡
|
𝐸0
= (1 − 𝛿)𝑎𝑆0  and 𝒰 = 𝜕𝑈

𝜕𝑡
|
𝐸0
= 𝑏 + 𝑒 with 𝒰−1 = 1

𝑏+𝑒
 . So the matrix, 

ℱ𝒰−1 = (1−𝛿)𝑎𝑆0
𝑏+𝑒

.  
 
Basic reproduction number, 𝑅0, which is the spectral radius or maximum  eigenvalues 
of the matrix, ℱ𝒰−1 is given as  
 
𝑅0 =

(1−𝜈)𝑎𝑆0
𝑏+𝑒

.         (2.3) 
 

2.2.2. Stability analysis of disease-free equilibrium, 𝑬𝟎.  The disease-free equilibrium, 
𝐸0, is established by solving simultaneously the system (2.1) at equilibrium state, that is 
𝑑𝑠
𝑑𝑡

 = 𝑑𝐼
𝑑𝑡

 = 𝑑𝑉
𝑑𝑡

 = 𝑑𝑅
𝑑𝑡

 = 𝑑𝐷
𝑑𝑡

 = 0. This gives the disease-free equilibrium, 𝐸0, of equation (2.2).  
 

Theorem 1. The disease-free equilibrium, 𝐸0, is locally asymptotically stable if 
𝑅0 < 1 otherwise unstable for 𝑅0 > 1.  
 
Proof. Using the linearization method, we have the Jacobian matrix at 𝐸0 of the system 
(2.1) given as 
 

𝐽(𝐸0) = [

−𝜐𝛿 −(1 − 𝜐)𝑎𝑆0 𝜙 𝑐
0 (1 − 𝜐)𝑎𝑆0 − (𝑏 + 𝑒) 0 0
𝜐𝛿 0 −𝜙 0
0 𝑏 0 −𝑐

] . 

 
The nonzero eigenvalues of the Jacobian matrix, 𝐽(𝐸0), are −𝑐, (1 − 𝜐)𝑎𝑆0 − (𝑏 + 𝑒) 
and −(𝜐𝛿 + 𝜙). The matrix, 𝐽(𝐸0), has negative eigenvalues if (1 − 𝜐)𝑎𝑆0 −
(𝑏 + 𝑒) < 0 which implies that (1−𝜈)𝑎𝑆0

𝑏+𝑒
< 1. Thus with the definition of 𝑅0 in 

equation (2.3), we have that the disease-free equilibrium, 𝐸0, is locally stable if 𝑅0 <
1 otherwise it is unstable.  
 
Theorem 2. The disease-free equilibrium, 𝐸0,  is globally asymptotically stable if 
𝑅0 < 1 otherwise unstable for 𝑅0 > 1.  
 
Proof. Using the approach in Shuai and Van den Driessche [32] to construct a 
Lyapunov function of the form 
 

𝐿 = 1
𝑏+𝑒

𝐼. 
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We differentiate 𝐿 along the trajectory of system (2.1) to give 
 

𝐿′ = 1
𝑏+𝑒

𝐼′, 
and this yields  
 

𝐿′ = 1
𝑏+𝑒

((1 −  𝜈)𝑎𝑆𝐼 − (𝑏 + 𝑒)𝐼).       (2.4) 
 

Simplifying and expanding equation (2.4) gives 
 

𝐿′ = ((1− 𝜈)𝑎𝑆
𝑏+𝑒

− 1) 𝐼 . 
 

Further simplification with definition of 𝑅0 in equation (2.3) yields  
𝐿′ = ((1− 𝜈)𝑎𝑆0

𝑏+𝑒
− 1) 𝐼 − (1− 𝜈)𝑎𝑆0

𝑏+𝑒
(𝑆0
𝑆
− 1) 𝐼 , 

 
which is equivalent to  

 
𝐿′ = (𝑅0 − 1)𝐼 − 𝑅0 (

𝑆0
𝑆
− 1) 𝐼.      (2.5) 

 
Thus, 𝐿′ < 0 if  𝑅0 < 1 since 𝑆0

𝑆
≥ 1 and 𝐿′ = 0 if 𝐼 = 0. This shows that every 

solutions of the system (2.1) tends to the singleton set 𝐸0 as 𝑡 → ∞. Therefore, by La 
Salle’s invariance principle [33], the disease-free equilibrium, 𝐸0, is globally 
asymptotically stable whenever 𝑅0 < 1. This completes the proof.  
 
2.3.  Sensitivity analysis. Sensitivity Analysis (SA) is performed to determine the 
robustness of the model predictions to parameter values since there are usually many 
errors in data collection and the parameter values are assumed [34]. It also determines 
the relative importance of model parameters on disease transmission [35]. Sensitivity 
analysis will enable us to find out the parameters that have high impact on 𝑅0 which 
should be the targeted in case of intervention strategies. 
  
The sensitivity index of a variable, 𝛾 that depends differentiable on index of a 
parameter, 𝑝 is defined as   𝑟𝑝

𝛾 =  𝜕𝛾
𝜕𝑝
 ×  𝑝

𝛾
 . 

Analytically, we derive the expression for the SA of  𝑅0 as  
𝑟𝑝
𝑅0 =  𝜕𝑅0

𝜕𝑝
 × 𝑝

𝑅0
,  where 𝑝 denotes each of parameters of 𝑅0. We therefore compute 

sensitivity indices of every parameters in 𝑅0 and display them in Table 1 with the 
sources of the parameter values.  
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    TABLE 1. Sensitivity indices of 𝑅0 
Parameter Value Source Index sign Sensitivity value 

𝜈 
 
𝑎 
 
𝑆0 
 
𝑒 
 
𝑏 

0.6 
 

0.160 
 

0.6 
 

0.0301653 
 

0.0608 

[19] 
 

[14] 
 

Assumed 
 

[14] 
 

[14] 
 

− 
 
+ 
 
+ 
 
− 
 
− 

1.5 
 

1.0 
 

0.9999999997 
 

0.3316133 
 

0.6683867361 

 
The sensitivity indices of  𝑅0 given in Table 1 are arranged in descending order. The 
indices with positive signs show that the value of 𝑅0 increases when corresponding 
parameters are increased while those indices having negative signs show that the value 
of 𝑅0 decreases when the parameters are increased. Hence from the results shown in 
Table 1, we have that the parameters  
𝑎 and 𝑆0 increase the value of 𝑅0 when they are increased which means the disease 
will persist in the population. Conversely, the parameters, 𝑏, 𝑒 and 𝜈 decrease the 
value of  𝑅0 when they are increased, implying that the virus will die out in the 
population in this regard. The most sensitivity parameter is the vaccination rate, 𝜈, 
with negative index sign follow by transmission rate, 𝑎. This implies that increasing 
the vaccination rate decreases the basic reproduction number, 𝑅0 which in return 
eliminate EVD in the population while increasing the transmission rate increases 𝑅0 
and this increases the spread of EVD in the population. This is shown in Figure 2 that 
increasing vaccination rate, 𝜈, decreases 𝑅0 while increasing the transmission rate, 𝑎, 
increases 𝑅0.  

 

 
FIGURE 2. Plots displaying the basic reproduction number, (𝑅0) as function of 
transmission rate, (𝑎) and vaccination rate, (𝜈). Here, 𝑅0𝑣 and 𝑅0𝑎 are the 

reproduction numbers when the parameters,  𝜐 and 𝛼 are varied. 
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3.  NUMERICAL SIMULATIONS 

In this section, we perform numerical experiments of the system (2.1) using the 
parameter values in Table 1 and 𝑐 = 0.0314862 [14], 𝛿 ∈ [0,1]  varied and 𝜙 = 0.1 
(assumed). This is solved using the fourth order Runge-Kutta method embedded in 
MatLab of Ode45. The choice of parameter values is to validity the analytic solutions 
and to show the impact of vaccination on Ebola virus disease dynamics. Using the 
values from the Table 1, we have 𝑅0 = 0.42214 with vaccination while 𝑅0 =
1.05535 without vaccination.  

 

FIGURE 3. Plots displaying the disease-free equilibrium solutions of system 
(2.1). 
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FIGURE 4. Plots showing the effect of vaccination on the infected and 
vaccinated individuals. 

 

FIGURE 5. Plots showing the effect of vaccine wane on the infected and vaccinated 
individuals. 

 

 

 

 

0 100 200 300 400
0

0.01

0.02

0.03

0.04

0.05

0.06
(a)

Time (Days)

Inf
ect

ed 
ind

ivid
ual

s, 
I(t)

 

 
Q=0.0
Q=0.5
Q=0.8

0 100 200 300 400
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(b)

Time (Days)
Va

cci
nat

ed 
ind

ivid
ual

s, 
V(t

)
 

 

Q=0.0
Q=0.5
Q=0.8

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2
x 10-4 (a)

Time (Days)

Inf
ec

ted
 in

div
idu

als
, I(

t)

 

 
)=0.0
)=0.5
)=0.8

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

Time (Days)

Va
cc

ina
ted

 in
div

idu
als

, V
(t)

 

 
)=0.0
)=0.5
)=0.8



                                                                                 

LAGJMA-2021/02 UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS 181 

 

FIGURE 6. Plots showing the proportion of people vaccinated on the infected and 
vaccinated individuals. 

 

4.   RESULTS AND DISCUSSION 

Figure 3 displays the stable disease-free equilibrium solution of system (2.1) in the 
presence of vaccination. We see from Figure 3 that disease-free equilibrium solution 
is achieved. The population of susceptible (vaccinated) individuals decreases 
(increases) to a point and remains stable while the Infected population, 𝐼(𝑡), decreases 
sharply and approaches a stable disease-free equilibrium state (see Figure 3(b)) 
showing elimination of EVD with vaccination in the population. This is the same with 
the recovery individuals in population that is in the absence of infectives in the 
population, the recovered population will approach disease-free population after 200 
weeks (see Figure 3(d)).  It shows that the number of infected individuals reduces with 
vaccination in place.  

The effect of increasing vaccination rate is depicted in Figure 4. We observe that 
increasing the vaccination rate reduces the number of infected persons while 
increasing the vaccinated population. For example in the absence of vaccination 
(𝑣 = 0.0), the infected population increases sharply and before gradually reduces and 
becomes endemic in the population (see Figure 4(b)). It also shows that once people 
are vaccinated in the population against EVD, they are protected and this will reduce 
the number of infected population and in return lead to eradication of EVD in the 
population. Figure 5 illustrates the effect of vaccine wane off on the infected and 
vaccinated individuals. As the waning rate, 𝜙, increases, efficacy of the vaccine sags, 
thus elongating the reduction time of the infected people but not drastically. For 
instance, a vaccine without waning rate, (𝜙 = 0.0), that is a highly efficacious 
vaccine reduces the population of Infected Individuals, 𝐼(𝑡), in a very short time while 
increasing the vaccinated people in the population. So, it is not just vaccinating people 
but it is also good to use vaccine that does not wane in order to achieve the aim of  
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vaccination. This makes the vaccinated persons to stay protected for long period of 
time against EVD.  Furthermore, the importance of vaccinating more people in the 
population is considered in Figure 6. It shows that the more people are vaccinated, the 
more it reduces the number of infected population and increases the vaccinated 
population and this shows that more people are protected against EVD. So once there 
is an outbreak of EVD, a good proportion of population should be vaccinated to reduce 
the spread of EVD in population and the vaccine should be a zero wane vaccine in 
order to halt the spread of EVD from affecting the population.   

 
5.   CONCLUSION 

 
In this work, the important of vaccination is considered by extending the model by 

Yarus [27]. The basic reproduction number 𝑅0, is computed using next generation 
method and it is used to show how vaccine controls the spread of EVD in the 
population. We observed that 𝑅0 is less than unity in the presence of vaccination while 
greater than unity in the absence of vaccination. The stability of disease-free 
equilibrium is analyzed and shown to be locally and globally asymptotically stable 
whenever 𝑅0 < 1  but unstable whenever 𝑅0 > 1.  Furthermore, the sensitivity 
analysis is carried out to discuss the importance of the model parameters on 𝑅0 and 
the result indicates that vaccination rate is the most sensitivity parameter of the model 
and increasing it will reduces the number of infected individuals in the population. 
This is supported by numerical simulation which shows that the number of infected 
persons reduces when more people are vaccinated in the population. Additionally, 
more people are protected when they are vaccinated with zero wane off vaccine which 
in return reduce infected population. This will lead to eradication of EVD in the 
population on time and makes the vaccinated persons to stay protected for long period 
of time against EVD.   
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