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ABSTRACT.   The T-R{Y} is a T-X method of using a quantile function to generate probability 

distributions. It is a generalization of the T-X, Beta-X and many other families. This paper developed a 

4-parameter Weibull-Logistic distribution using the T-R{Y} framework. This was achieved by 

combining the flexibility of the Weibull distribution with the two-parameter logistic distribution that 

has a location parameter, using the standard quantile function of the exponential distribution. Properties 

of the resulting distribution are extensively investigated, viz; rth non-central moments, quantiles, mode, 

survival function and hazard function. Plots of its density and cumulative distribution functions were 

presented to show its various shapes such as skewness or normal-type for some parameters’ values. The 

Logistic, Weibull, Weibull-logistic and skew logistic distributions are sub-models of the 4-parameter 

Weibull-Logistic distribution. The distribution is also found to relate with the Weibull distribution 

through its quantile function, a general feature of the T-R{Y} family. The maximum likelihood method 

was used to estimate the parameters of the distribution. Simulation study was carried out to show the 

consistency of its maximum likelihood parameters estimated, and it showed that the shape of the 

distribution approaches symmetry as the sample size increases. The applicability of the distribution was 

demonstrated using real life dataset and the likelihood ratio test showed that the location parameter is 

significant. The proposed distribution would be very useful in areas where Weibull and Logistic 

distributions are not good fit. The new generator can also be used to generate many other distributions 

in this family.  
 
 

1. INTRODUCTION 
 

The need to transform and generalize basic distributions arises in many applied problems in 

physics, biology, finance, engineering, survival and environmental studies (Mikolaj 1972; 

Shakil and Kibria 2006; Kibria and Nadarajah2007; Cordeiro et al., 2008; Akarawak et al., 

2013; Famoye et al., 2018; Ekum et al., 2020a, 2020b, 2021; Ogunsanya et al., 2021a, 2021b). 

Generalized distributions have been extensively studied by researchers in the field of 

distribution theory (Mudholkar and Srivastava 1993; Nadarajah 2005; Famoye et al., 2005; 

Alzaatreh et al., 2013; Aljaarah et el., 2014; Alzaatreh et al., 2014 and Alzaatreh et al., 2016). 

In recent years, families of distributions that have been studied include: Beta-X family (Eugene  

http://lagjma.edu.ng/
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et al., 2002), the Transformed-Transformer family (Alzaatreh et al., 2013), T-X{Y} family 

(Aljarrah et al., 2014) and the T-R{Y} by (Ajarrah el al., 2014 and Alzaatreh et al., 2014).  

On the Weibull-X family of distributions proposed by Alzaatreh and Ghosh (2015), the 

Weibull-Logistic with three parameters was proposed using the T-X framework. The three 

parameters Weibull-Logistic distribution may not capture all the variations in some dataset, 

especially for the adjustment of the location parameter, which value may determine the shift of 

the distribution along the horizontal axis. So, a Weibull-Logistic distribution with a location 

parameter may be necessary. If this is the case, it is then necessary to propose a 4-parameter 

Weibull-Logistic (4WLD) using a related but different framework, T-R{Y}. 

In this paper, the 4-parameter Weibul-Logistic distribution is proposed using the 

Transformed-Transformer with quantile function framework, T-R{Y}. Let 
( )RF x

be the 

cumulative distribution function (cdf) of any random variable R and
 .YQ

the quantile function 

of a random variable Y, and 
( )Tf t

the probability density function (pdf) of a random variable 

T defined on  ),0  and its corresponding cumulative distribution function (cdf) is 
( )TF t

.  The 

cdf of a generalized family of distributions is therefore given as  

 
     

( )

0
( ) ( ) ( ) ( )

Y RQ F x

X T Y R T Y RF x f t dt P T Q F x F Q F x= =  = ,  (1.1) 

where X is the newly formed random variable derived from the framework, with cdf 
( )XF x

.The family of distribution defined by (1.1) is called the Transformed-Transformer with 

quantile function (T-R{Y}) family, where the random variable R is being generalized by 

another random variable T. The corresponding pdf of the generalized distribution in (1.1) is 

given by 

    ( ) ( ) ' ( ) ( )X T Y R Y R Rf x f Q F x Q F x F x=  
,    (1.2) 

with some differentiation and re-arrangement equation (1.2) becomes  

  
  

( )
( ) ( )

( )

T Y R

X R

Y Y R

f Q F x
f x f x

f Q F x
= 

.      (1.3) 

The survival and hazard functions from equation (1.1) and (1.3) of the random variable X 

is given by 
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( ) 1 ( )XS x F x= −
       (1.4) 

and 

( )
( )

1 ( )

X

X

f x
h x

F x
=

−        (1.5) 

respectively. 

The remaining sections of this paper are organized as follows. Section 2 showcased the 

materials and method, in which the 4-parameter Weibull-Logistic distribution was derived and 

some of its properties were presented. Section 3 is the results and discussion, where the 

simulation study and the application of the distribution were carried out; while the conclusion 

was done in Section 4. 

 
2. MATERIALS AND METHODS 

 

      2.1. The 4-Parameter Weibull–Logistic Distribution (4WLD) 

Let T follows the Weibull distribution with shape parameter a and scale parameter b, having 

probability density function (pdf) 

1

( ) ; 0; , 0

a
a x

b

T

a x
f x e x a b

b b

−  
− 

  
=   

 
, and Y follows an 

exponential distribution with a standard quantile function QY(x) given by 

( ( )) log[1 ( )]Y R RQ F x F x= − − . Substituting ( )Tf t  and  ( )Y RQ F x in equation (1.1), we have 

 
log(1 ( ))

1

0
( )

a

R

t
F x

a b

X a

a
F x t e dt

b

 
−− −  −  =  ,      (2.1) 

where FR(x) is the cumulative distribution function of random variable R. Integrating (2.1) and 

with proper substitutions gives  

 

 

 
log(1 ( ))

( ) 1 exp

a

R
X

F x
F x

b

 −  
= − − −  

   

     (2.2) 

Differentiating the cdf in (2.2), the probability density function of the generalized distributions 

is given by 

1
( ) log(1 ( )) log[1 ( )]

( ) exp
1 ( )

a a

R R R
X

R

f x F x F xa
f x

b F x b b

−  − −    
= − − −    

−      

.  (2.3) 
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Thus, equations (2.2) and (2.3) are the cdf and pdf of a generalized Weibull-R-Exponential 

family. The R can be any random variable that follows any distribution. 

2.1.1. The pdf of the 4-Parameter Weibull–Logistic Distribution 

Recall (2.3), when R is taking to be Logistic random variable with probability density 

function (pdf), fR(x) and cumulative distribution function (cdf), FR(x) as respectively given in 

(2.4), we derive the pdf of the 4-parameter Weibull-Logistic distribution as follows: 

2
( )

1

x

R
x

e
f x

e









− 
− 

 

− 
− 

 

=
 

+ 
 
 

;

1

( ) 1

x

RF x e





−
− 

− 
 

 
= + 

   .

    (2.4) 

Substituting (2.4) into equation (2.3) gives the pdf of the 4-parameter Weibull-Logistic 

distribution (4WLD) and it is given by: 

 
1

log 1 log 1

( ) exp

1

a a
x x

x

X x

e e
ae

f x
b b

b e

 

 







−
− −   

   
   − 

 
 

− 
 
 

       
    + +   

           = −    
      

+       
       

;    (2.5) 

where − x ,  −   and 0,, ba . Parameter a is the shape parameter,  is the 

scale parameter, µ is the location parameter and b is rate parameter. Each of these parameters 

are very important in distribution theory. So, the three parameter Weibull logistic distribution 

defined by Alzaatreh et al. (2013) is a special case of this distribution. 

To show that equation (2.5) is a pdf, we do the following: 

( ) 1Xf x dx



−

=          (2.6)  

Let  −= xu ,and += ux , so that, dudx =
    

(2.7) 

So, substitute (2.7) into (2.5) to have  

∫
𝑎𝑒𝑥𝑝(

𝑢

𝜎
)

𝑏𝜎[1+𝑒𝑥𝑝(
𝑢

𝜎
)]

∞

−∞
{
𝑙𝑜𝑔[1+𝑒𝑥𝑝(

𝑢

𝜎
)]

𝑏
}

𝑎−1

𝑒𝑥𝑝 (−{
𝑙𝑜𝑔[1+𝑒𝑥𝑝(

𝑢

𝜎
)]

𝑏
}

𝑎

) 𝑑𝑢 = ∫ 𝑓(𝑢)
∞

−∞
𝑑𝑢 = 1 (2.8) 

Equation (2.8) completes the proof, since f(u) is the pdf of the Weibull-Logistic distribution 

with three parameters defined by Alzaatreh and Ghosh (2015).  
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Special cases of the 4WLD 

Lemma 2.1. The 4-parameter Weibull-Logistic distribution reduces to Logistic distribution if 

a = b = 1. 

Proof 

Put a = b =1 in (2.5), we have, 

2 2
( )

1 1

x x

X
x x

e e
f x

e e

 

 

 

  

− −   
−   

   

− −   
−   

   

= =
   

+ +   
   
   

,       (2.9) 

Equation (2.9) is true and completes the proof, based on the symmetric property of Logistic 

distribution. Equation (2.9) is the same as the pdf of Logistic distribution given in (2.2). 

Therefore, the 4-parameter Weibull-Logistic distribution generalizes the Logistic distribution. 

Additive Noise 

A good way of describing the location families is through the concept of additive noise. 

The additive noise is described thus: if  is a constant and W is random noise with probability 

density fW(w), then, X =  + W has probability density f(x) = fW(x-) and its distribution is 

therefore part of a location family, where  is a location parameter. So, W can be a random 

variable that follows a three-parameter Weibull-distribution, while X follows 4-parameter 

Weibull distribution. Thus, the 4WLD is a member of the location family of distribution. 

Lemma 2.2. If X is a continuous random variable that follows the 4-parameter Weibull-

Logistic distribution, then a random variable W = X - µ follows the three-parameter Weibull-

Logistic distribution, defined by Alzaatreh and Ghosh (2015), if w = x-µ. 

Proof 

Put w = x-µ in (2.5), we have, 

( )
( ) ( )

1
/ //

/

log 1 log 1
( ) exp , , , , 0

1

a a
w ww

w

e eae
g w y a b

b bb e

 






−     + + 
   = − −     
   +      

.  (2.10) 

Equation (2.10) is the pdf of the three-parameter Weibull-Logistic distribution defined by 

Alzaatreh and Ghosh (2015). Therefore, the 4-parameter Weibull-Logistic distribution 

generalizes the three-parameter Weibull-Logistic distribution. 

Thus, the Logistic distribution and the three-parameter Weibull-Logistic distribution are 

special cases of the 4-parameter Weibull-Logistic distribution. 

 

https://en.wikipedia.org/wiki/Additive_noise
https://en.wikipedia.org/wiki/Noise
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2.1.2. The cdf of the 4WLD 

The cumulative distribution function (cdf) of the proposed 4-parameter Weibull-Logistic 

Distribution (4WLD) is obtained as follows: 

Recall (2.2) 

 
log(1 ( ))

( ) 1 exp

a

R
X

F x
F x

b

 −  
= − − −  

   

 

Substitute the cdf of random variable R, that is, FR(x) into (2.2) to have 

1

1
( ) 1 exp log 1 1

a

x

X a
F x e

b





−
− 

− 
 

        = − − − − +    
         

.    (2.11)

 

Reduce (2.11) to have the cdf of the proposed 4WLD in (2.12). 

log 1

( ) 1 exp

a
x

R

e

F x
b





− 
 
 

   
  + 

     = − −  
  
  

   

      (2.12) 

2.1.3. Survival and Hazard Functions of 4WLD 

From here henceforth, we will write the pdf and cdf of the proposed random variable X, as 

just f(x) and F(x) respectively.  

The survival function )(xS  of 4WLD is given by 
































































+

−=−=








 −
a

x

b

e

xFxS





1log

exp)(1)( ,    (2.13) 

and the hazard function h(x) is given by: 

 

1

log 1
( )

( )
( )

1

a
x

x

x

e
f x ae

h x
S x b

b e











−
− 

 
 − 

 
 

− 
 
 

  
 + 

   = =  
   

+    
   

,    (2.14) 
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2.1.4. Plots of 4WLD PDF, CDF, Survival and Hazard Functions 

 

Figure 1. PDF plots of µ = -2,0.5,1,2,5  Figure 2. PDF plots of σ = 0.8,1,2,5,6 

 

 Figure 3. PDF plots of a = 0.5,2,3,5  Figure 4. PDF plots of b = 0.5,1,3,5 

  

Figure 5. Plots of CDF   Figure 6. Plots of Survival Function 
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Figure 7. Plots of Hazard Function 

The plots of the 4WLD pdf in Figures 1 to 4 clearly reveal the effect of the parameters on 

the distribution. It is observed that a affects the shape of the distribution, µ shifts the location 

while b and σ have effect on the scale. Hence, we infer that a is the shape parameter, µ is the 

location parameter while b and σ are the scale parameters. 

The cdf plot presented in Figure 5 shows that as x increases the cdf increases and 

approaches 1. Similarly, the plot of survival function in Figure 6 is a decreasing function of x. 

The plots of hazard function (HF) as presented in Figure 7 reveal that for a < 1, HF increases 

to a maximum and then decreases, for a = 1, HF increases to a maximum and then remain 

constant, for a > 1, 4WLD exhibit increasing hazard rate. 

2.2. Some Properties of the 4WLD 

2.2.1. The Limit of PDF and CDF of 4WLD  

The limiting behavior of 4WLD as values of X approaches −  and   is presented below: 

1

log 1 log 1

lim ( ) lim exp 0

1

a a
x x

x

xx x

e e
ae

f x
b b

b e

 

 







−
− −   

   
   − 

 
 

− → →
 
 

       
    + +   

           = − =    
      

+       
       

.   (2.15) 

1

log 1 log 1

lim ( ) lim exp 0

1

a a
x x

x

xx x

e e
ae

f x
b b

b e

 

 







−
− −   

   
   − 

 
 

− → − → −
 
 

       
    + +   

           = − =    
      

+       
       

.   (2.16) 
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From (2.15) and (2.16), lim ( )
x

f x
→ −

 = lim ( )
x

f x
→

 = 0. Therefore, it is expected that the pdf curve 

should rise to a maximum point and then drop. 
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Equations (2.17) and (2.18) shows that the cdf is a monotonic increasing function. The highest 

probability value is 1 and the lowest is 0. It follows that F(x) converges to one as x →, and 

converges to zero as x → -. Hence,  0 ≤ 𝐹(𝑥) ≤ 1. 

2.2.2. The rth Non-Central Moment of 4WLD 

Theorem 2.1. The raw moment of the proposed 4-parameter Weibull-Logistic distribution is 

the weighted sum of the raw moment of the 3-parameter Weibull-distribution proposed by 

Alzaatreh and Gosh (2015). 

Proof  

The rth raw moment of 4 WLD is given as: 
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Let z = x - µ, dx = dz and x = z + µ 
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Where Z is a 3-parameter Weibull-Logistic distribution proposed by Alzaatreh and Ghosh 

(2015), and E(zl) is the lth raw moment of the 3-parameter Weibull-Logistic distribution. 

Equation (2.23) completes the proof. 

The lth raw moment of the 3-parameter Weibull-Logistic distribution proposed by Alzaatreh 

and Ghosh (2015), is given by 
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where
jj kkk ,..., 21= and jj kkkS +++= ...21  

See the proof of (2.24) on pages 176 and 177 by Alzaatreh and Ghosh (2015). 

The rth raw moment of the 4-parameter Weibull-Logistic distribution is therefore given by 

substituting (2.24) into (2.23) to have 
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(2.26) 

So, (2.26) is the rth raw moment of the proposed 4-parameter Weibull-Logistic distribution. 

Hereafter, the 4-parameter Weibull-Logistic distribution logistic distribution will be referred 

to as 4WLD, while the 3-parameter Weibull-Logistic distribution by Alzaatreh and Ghosh 

(2015) will be referred to as WL(a, , b). 



LAGJMA-2022/01   UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS          47 

 

Note that from (2.26), if r = 1 and l = 1, we have the mean of 4WLD 
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where E(Z) is the mean of three-parameter Weibull-Logistic distribution proposed by Alzaatreh 

and Ghosh (2015).  

 

2.2.3. Quantile Function 

Theorem 2.2. The quantile function of 4WLD exist and it is given by  
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We make x the subject of the formula. Let F(x) = p. 
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Take the log of (2.27) to have 
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Multiply (2.28) by minus and solve further to have  
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Take exponential of (2.29) and solve to have 
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Take the log of (2.30) to have 
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Solve for x in (2.31) to have 
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Thus, the quantile function of 4WLD exists and (3.18) completes the proof. 

Median 

The median of 4WLD is obtained by letting p = 0.5in (2.32) 
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Solve (2.33) further to have (2.34) 
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Thus, (2.35) is the median of 4WLD. 

Let the pdf of Weibull distribution be 
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Remark 1. If Y is a Weibull distributed random variable, then from (2.36), 

 1log −+= YeX   is a 4-parameter Weibull-Logistic random variable, using a simple 

transformation technique. 

The simple transformation technique 𝑓(𝑥) = 𝑓(𝑦)|𝑑𝑥|, where Y follows a Weibull 

distribution and X follows a 4WLD. It is obvious that 𝑦 = 𝑙𝑜𝑔 [1 + 𝑒𝑥𝑝 (
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)
. 

Substituting y and dx into (2.36) appropriately will produce the desired result. 
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2.2.4. Modal Function 

The mode is that value of x which satisfies 

𝑑𝑓(𝑥)
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Take the log of the pdf to have

 
𝑙𝑛𝑓(𝑥) = 𝑙𝑛𝑎 + (

𝑥−𝜇

𝜎
) − 𝑙𝑛𝑏 − 𝑙𝑛𝜎 − 𝑙𝑛 [1 + 𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)] + (𝑎 − 1)𝑙𝑛 {𝑙𝑛 [1 +

𝑒𝑥𝑝 (
𝑥−𝜇

𝜎
)]} − (𝑎 − 1)𝑙𝑛𝑏 − {

𝑙𝑛[1+𝑒𝑥𝑝(
𝑥−𝜇

𝜎
)]

𝑏
}

𝑎

(2.38) 

Take the first derivative of (2.39) and equate the result to zero to arrive at
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Solve (2.39) further to arrive at (2.40) 
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From (2.40) make x from the left hand side to be the subject of the formula to have 
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Equation (2.41) is mode of the 4WLD but it is not in a closed form. We have to proffer an 

alternative solution by multiplying both sides of (2.41) by n. 
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So, dividing (2.42) by n, we arrive at (2.43) 
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where n is the number of observation, which can be gotten from the data, a, b, µ and  are 

parameters estimated using the maximum likelihood estimator (MLE). So, the mode of 4WLD 

can be computed with (2.43). 

2.2.5. Likelihood Ratio Test 

In statistics, the likelihood-ratio test (LRT) measures the goodness of fit of two 

competing statistical models based on the ratio of their likelihoods, where one is found 

by maximization over the entire parameter space and another found after imposing 

some constraint. The 4WLD can be reduced to the three parameter Weibull-logistic distribution 

proposed by Alzaatreh and Ghosh (2015) if a constraint is imposed on the location parameter. 

The Likelihood Ratio Test (LRT) for the 4WLD and Weibull-logisticis derived thus:  
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if the constraint µ = 0 then we have 

𝑓0(𝑥) =
𝑎𝑒𝑥𝑝 (

𝑥

𝜎
)

𝑏𝜎 [1 + 𝑒𝑥𝑝 (
𝑥−𝜇

𝜎
)]
{
𝑙𝑛 [1 + 𝑒𝑥𝑝 (

𝑥

𝜎
)]

𝑏
}

𝑎−1

𝑒𝑥𝑝(−{
𝑙𝑛 [1 + 𝑒𝑥𝑝 (

𝑥

𝜎
)]

𝑏
}

𝑎

) ;  𝑎, 𝑏, > 0,−

< 𝑥 < . 

By definition, the LRT is given by 

𝐿𝑅𝑇 = −2𝑙𝑜𝑔 (
𝐿0
𝐿1
) 

where L0 and L1 are the likelihood functions of the Weibull-logistic distribution and the 4WLD 

respectively. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Goodness_of_fit
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Constraint_(mathematics)
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𝐿𝑅𝑇 = −2𝑙𝑜𝑔

(

 
 

𝑎𝑛𝑒𝑥𝑝(∑
𝑥𝑖
𝜎
)

𝑏𝑛𝜎𝑛∏[1+𝑒𝑥𝑝(
𝑥𝑖
𝜎
)]
∏{
𝑙𝑛[1+𝑒𝑥𝑝(

𝑥𝑖
𝜎
)]

𝑏
}

𝑎−1

𝑒𝑥𝑝(−∑{
𝑙𝑛[1+𝑒𝑥𝑝(

𝑥𝑖
𝜎
)]

𝑏
}

𝑎

)

𝑎𝑛𝑒𝑥𝑝(∑
𝑥𝑖−𝜇

𝜎
)

𝑏𝑛𝜎𝑛∏[1+𝑒𝑥𝑝(
𝑥𝑖−𝜇

𝜎
)]
∏{
𝑙𝑛[1+𝑒𝑥𝑝(

𝑥𝑖−𝜇

𝜎
)]

𝑏
}

𝑎−1

𝑒𝑥𝑝(−∑{
𝑙𝑛[1+𝑒𝑥𝑝(

𝑥𝑖−𝜇

𝜎
)]

𝑏
}

𝑎

)

)

 
 

 (2.44) 

𝐿𝑅𝑇 = −
2𝑛𝜇

𝜎
−
2

𝑏𝑎
∑{𝑙𝑜𝑔 [1 + 𝑒

1

𝜎
(∑ 𝑥𝑖−𝑛𝜇)]}

𝑎

+
2

𝑏𝑎
∑{𝑙𝑜𝑔 [1 + 𝑒

(
1

𝜎
∑𝑥𝑖)]}

𝑎

− 2∑𝑙𝑜𝑔
{𝑙𝑛 [1 + 𝑒

(
1

𝜎
∑𝑥𝑖)]}

𝑎−1

[1 + 𝑒
(
1

𝜎
∑𝑥𝑖)]

− 2∑𝑙𝑜𝑔
[1 + 𝑒

1

𝜎
(∑𝑥𝑖−𝑛𝜇)]

{𝑙𝑛 [1 + 𝑒
1

𝜎
(∑𝑥𝑖−𝑛𝜇)]}

𝑎−1 

Equation (2.44) is asymptotically chi-square with   = k1 – k0, where k1 and k0 are the number 

of parameters of 4WLD and Weibull-logistic distribution, that is, 𝐿𝑅𝑇~𝜒𝛼,𝜈
2 . Note that  is the 

level of significance and  is the degrees of freedom. 

2.2.6. Maximum Likelihood Estimation (MLE) for Parameters Estimates  

The maximum likelihood estimates of the 4WLD parameters is derived thus:  

Given the pdf in (2.5) as 

𝑓(𝑥) =
𝑎𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)

𝑏𝜎 [1 + 𝑒𝑥𝑝 (
𝑥−𝜇

𝜎
)]
{
𝑙𝑛 [1 + 𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)]

𝑏
}

𝑎−1

𝑒𝑥𝑝(−{
𝑙𝑛 [1 + 𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)]

𝑏
}

𝑎

) 

Take the likelihood of the pdf in (2.5) to arrive at 

𝐿[𝑓(𝑥)] =
𝑎𝑛𝑒𝑥𝑝(∑

𝑥𝑖−𝜇

𝜎
)

𝑏𝑛𝜎𝑛∏[1+𝑒𝑥𝑝(
𝑥𝑖−𝜇

𝜎
)]
∏{

𝑙𝑛[1+𝑒𝑥𝑝(
𝑥𝑖−𝜇

𝜎
)]

𝑏
}

𝑎−1

𝑒𝑥𝑝 (−∑{
𝑙𝑛[1+𝑒𝑥𝑝(

𝑥𝑖−𝜇

𝜎
)]

𝑏
}

𝑎

)  (2.45) 

Take the log of the likelihood in (2.45) to arrive at the log likelihood function, l given by 

𝑙 = 𝑛𝑙𝑛𝑎 + ∑ (
𝑥𝑖−𝜇

𝜎
)𝑛

𝑖=1 − 𝑛𝑙𝑛𝑏 − 𝑛𝑙𝑛𝜎 − ∑ 𝑙𝑛 [1 + 𝑒𝑥𝑝 (
𝑥𝑖−𝜇

𝜎
)]𝑛

𝑖=1 + (𝑎 − 1)∑ 𝑙𝑛 {
𝑙𝑛[1+𝑒𝑥𝑝(

𝑥𝑖−𝜇

𝜎
)]

𝑏
}𝑛

𝑖=1 −

𝑏−𝑎 ∑ {𝑙𝑛 [1 + 𝑒𝑥𝑝 (
𝑥𝑖−𝜇

𝜎
)]}

𝑎
𝑛
𝑖=1 (2.46) 

To estimate the values of a, b, µ and , we differentiate equation (2.46) partially with respect 

to each of the parameters and equate each to zero and solve for each parameter.  
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3. RESULTS 

 

3.1. Density Plots of WLD Simulated Data 

The values of the parameters are estimated using numerical method with R program 

(maxLik). The maxLik package requires initial value for each parameter.  The initial value for 

the parameter  can be obtained by assuming that X follows the logistic distribution with 

parameter  and µ. Thus, the initial value for (Johnson et al., 1994) is 0 =√3sx/π, where sx is 

the sample standard deviation of X. Using Remark 1, the initial values for the parameters a and 

b can be obtained by considering 𝑥𝑖 = 𝜇 + 𝜎𝑙𝑜𝑔(𝑒
𝑦𝑖 − 1), 𝑖 = 1, 2,···,n for a random sample 

of size n drawn from the Weibull distribution with parameters a and b. Thus, the initial values 

for the parameters a and b (Johnson et al., 1994) are𝑎0 = 
𝜋

√6𝑆𝑙𝑜𝑔𝑦𝑖
and𝑏0 = 𝑒𝑥𝑝(𝑥̅𝑙𝑜𝑔𝑦𝑖 +

δ
𝑎0⁄ ),where Slogyi and 𝑥̅logyi are the sample standard deviation and the sample mean for logyi, 

and   is the Euler gamma constant which approximately equals 0.57722. 

A simulation study is done for evaluating the performance of the MLE parameters of the 

4WLD. We first simulated Weibull random variates, say y, then we simulated 4WLD variates 

x. It is easy to generate Weibull random variates using R inbuilt codes, so the 4WLD was then 

generated from the Weibull variates using the transformation in Remark 1. We considered 

several parameter choices for a, b, µ and . 4 different sample sizes n = 50, 100, 500 and 1000 

were considered. For each parameter combination, we generate a random sample y1,y2,···,yn 

from Weibull distribution with parameters a and b. The maxLik package in R was used to 

achieve the iterative process 500 times in order to find the means and standard deviations of 

the parameter estimates.  
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Figure 8. Histogram with Density for 4WLD Simulated Data 

The histograms and density plots of the simulated data for different parameter values at N 

= 1000 are presented in Fig. 8. The histograms show that the distribution can be positively 

skewed (the two middle histograms), negatively skewed (the first two histograms) or 

asymptotically normal (the last two histograms), depending on the parameter values.    

3.1.2. An Application to Data 

To illustrate its applicability, the 4WLD is applied to a data set obtained from Smith and 

Naylor (1987) on the strengths of 1.5 cm glass fibres measured at the National Physical 

Laboratory in England. The 4WLD is compared with the distributions in Alzaatreh et al. (2015)  
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of which Weibull-logistic distribution emerged as the most favourable distribution. The 

Exploratory Data Analysis (EDA) of the data, its histogram and Q-Q plot are presented in Table 

1; the maximum likelihood estimates, log-likelihood, Akaike Information Criterion (AIC), the 

Kolmogorov-Smirnov test statistic (K-S), and the K-S p-value for 4WLD, Weibull-logistic, 

skew logistic with location parameter, Weibull and logistic distributions are given in Table 2. 

The AIC = 2k – 2log(L), where k is the number of estimated parameters in the model and L 

maximum value of the likelihood function for the model. The LRT result is given in Table 3. 

Table 1 shows the exploratory data analysis of the 51 measured strengths of 1.5 cm glass 

fibres. Table 1 shows that the data has a mean of 1.4418 with a standard deviation of 0.3269, 

resulting to a coefficient of variation of 0.2267. The data is negatively skewed and has a 

kurtosis of 3.8025. 

Table 1. Data Exploration 

Statistics Values Histogram 

N 51 

 

Mean 1.4418 

Variance 0.1068 

Standard Dev. 0.3269 

Skewness -0.6440 

Kurtosis 3.8025 

C.V 0.2267 
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Table 2. Parameter Estimates for the Glass Fibre Data 

Distribution Parameter 

Estimates 

Log 

likelihood 

AIC K-S K-S p-value 

4WLD µ̂ = 1.440 

̂ = 0.3280 

𝑎̂ =0.1444 

𝑏̂ = 0.000081 

-0.1286 7.7428 0.0321 1.0000 

Weibull-logistic 𝑐̂ = 10.9867 

̂ = 1.2397 

̂ = 1.3909 

-2.0928 10.1856 0.0417 1.0000 

Skew logistic 

with location 

𝛼̂ = -2.8240 

𝛽̂ = 0.2210 

𝑚̂ = 1.4170 

-2.2925 10.5850 0.0516 0.9997 

Weibull 𝑐̂ = 5.234792 

̂ = 1.564321 

-13.7431 31.4862 0.2353 0.1188 

Logistic ̂ = 0.7425 -75.4164 152.8328 0.6544 0.0000 

 

Table 3. Log-Likelihood Ratio Test Result Using the Glass Fibre Data 

Distribution Log 

likelihood 

AIC LRT 
0.05,1
2  

4WLD -0.1286 7.7428 3.9284 3.841 

Weibull-logistic -2.0928 10.1856 

 

 

4. DISCUSSION 

 

In this study, the T-R{Y} framework was used to develop a novel four-parameter 

distribution called Weibull-logistic with exponential quantile function (4WLD) distribution. 

Different properties of the proposed distributions were derived such as its cdf, pdf, survival, 

and hazard rates with their respective curves at different parameter values. The relationship 

between the proposed distribution with logistic and three-parameter Weibull-logistic 

distributions. The proof to show that the PDF is a proper one was established through proofs 

and 
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 can also be seen from the PDF and CDF plots. Other properties were derived, such as, the 

limit properties of the PDF and CDF, the non-central moments, quantile function, modal 

function, likelihood ratio test. The Maximum Likelihood Estimation (MLE) method was used 

to estimate the parameters of the new distribution. Histograms with density plots were used to 

show various shapes of the distribution, which can be negatively skewed (a = 2, b = 0.5, µ = 5 

and  = 0.5) or positively skewed (a = 2, b = 15, µ = 5 and  = 5), asymptotically normal (a = 

2, b = 5, µ = 5 and  = 5). 

The applicability of the new 4WLD was applied to the data obtained from Smith and 

Naylor (1987) on the strengths of 1.5 cm glass fibres measured at the National Physical 

Laboratory in England, and the results were compared with the distributions in Alzaatreh et al. 

(2015) of which 4WLD emerged as the most favourable distribution. The EDA using the 

histogram and Q-Q plots were presented in Table 1; the maximum likelihood estimates, log-

likelihood, Akaike Information Criterion (AIC), the Kolmogorov-Smirnov test statistic (K-S), 

and the K-S p-value for 4WLD, Weibull-logistic, skew logistic with location parameter, 

Weibull and logistic distributions were presented in Table 2, and the LRT result was presented 

in Table 3. Table 1 showed 51 measured strengths of 1.5 cm glass fibres were observed with 

mean of 1.4418 with a standard deviation of 0.3269, resulting to a coefficient of variation of 

0.2267. The data is negatively skewed and has a kurtosis of 3.8025. 

Table 2 showed that all the competing distributions show give adequate fit to the glass 

fibre data, except for logistic distribution, as shown in the K-S p-value. Using the selection 

criteria, log-likelihood and AIC, it is seen that the 4WLD outperformed the other competing 

distributions. Table 2 showed that the location parameterµ significantly improves the Weibull-

logistic distribution fits for the strength of 1.5 glass fibres data. Table 3 showed that the LRT 

statistic is greater than the Chi-square critical value. This showed that the 4WLD is 

significantly better than the Weibull-logistic distribution, meaning that the location parameter 

has effect on the distribution base on the data of interest (strength of 1.5 glass fibres data). 

 

5. CONCLUSION 

 

The 4-parameter Weibull-Logistic Distribution (4WRD) has been proposed in this paper 

using the T-R{Y} framework proposed by Aljarrah et al. (2014).  The proposed distribution is 

an improvement to the Weibull-logistic distribution by adding a location parameter. The  
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importance of adding a location parameter is demonstrated using the likelihood ratio test with 

the glass fibres data. Several plots have been presented to show the effects of the parameters 

and it was found that the distribution is unimodal, skewed and normal-type for some values of 

the parameters. Expressions for some statistical properties of the proposed distribution have 

also been derived. We showed that the proposed distribution is a member of the location family 

of distribution, with some advantages. Simulation results show that as the sample size increases 

the shape of 4WRD approaches symmetry, this is backed up by the central limit theorem. 

Furthermore, the study shows that 4WRD has a relationship with the Logistic distribution, 

Weibull distribution and as well as the three parameter Weibull-Logistic distribution.  

Finally, we illustrated the applicability of the 4WLD to data and compared the result with 

Weibull-logistic, skew logistic with location parameter, Weibull and logistic distributions 

using log-likelihood, AIC and K-S statistic criteria. The performance of the proposed 4WLD 

is better when compared with the performance of the competing distributions using the glass 

fibres data. Also, the LRT showed that the 4WLD performed better at 5% level of significance 

using the glass fibres data. Thus, the 4WRD can be used to model data that are not well fitted 

by Weibull-logistic, skew logistic with location parameter, logistics and Weibull distributions. 

Also, it should be noted that all the competing distributions are sub-model of the proposed 

4WRD. 
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