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CAPTURING EXCESS ZEROS IN MODELING
AUTO-INSURANCE CLAIMS IN AN INDIGENOUS

INSURANCE FIRM USING ZERO INFLATED MODELS AND
HURDLE MODELS

MARY AKINYEMI∗, ABISOLA RUFAI, AND NOFIU IDOWU BADMUS

Abstract. Count data occur naturally in a number of disciplines ranging from
economics and social sciences to finance as well as medical sciences. Count data
could be plagued with over-dispersion and excess zeros making it difficult to
employ the use of classic linear models. Different models have been proposed
to capture this peculiarity in count data, A number of classical regression mod-
els such as the generalized Poisson and negative binomial have been used to
model dispersed count data. Hurdle and zero-inflated models are also said to
be able to capture over-dispersion and excess zeros in count data. In this paper,
we compare the performance of Poisson and Negative Binomial hurdle models,
zero-inflated Poisson and Negative Binomial models, classical Poisson and Neg-
ative Binomial regression models as well as the zero-inflated compound Pois-
son generalized linear models to modeling frequency of auto insurance claims
in a typical emerging market. The model parameters are estimated using the
method of maximum likelihood. The models performances are compared based
on some model selection criteria, including: Akaike and Bayesian information
Criteria (AIC and BIC), and the model lift which was obtained by the Gini
index score. The zero-inflated compound Poisson generalized linear models
performed better than the other models considered.

1. Introduction

Count data occur naturally in a number of disciplines ranging from economics
and social sciences to finance as well as medical sciences. Naturally, a typical data
set containing the number of insurance claims made over a period is considered
as count data (see [11], [6] and [7]). Modeling the number of claims is a crucial
part of insurance pricing. Count regression analysis allows identification of risk
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factors and prediction of the expected frequency claims based on the type of
policy taken out and the characteristics of the policy holders. Most insurers
would calculate the premium by combining the expected claim amount with the
conditional expectation of the number of claims given the risk characteristics.
Some insurers may also consider experience rating when setting the premiums,
so that the number of claims reported in the past can be used to improve the
estimation of the conditional expectation of the number of claims for the following
year [5].

Over the years, Insurers gradually amassed sizable longitudinal information on
their policy holders, this somewhat availability of data has allowed research in
this area to expand so that the literature on the application of count regression
analysis in insurance line of discipline has grown considerably in the past years.
[5] in their paper addressed panel count data models in the context of insurance,
to showcase the advantages of using the information on each policy holder over
time for modeling the number of claims. They argue that new panel data models
presented in their work allow for time dependence between observations and are
closer to the data generating process that one can find in practice.

1.1. Literature Review. Different models have been proposed to capture this
peculiarity of excess zeros in count data. [20] apply the Poisson, Negative Bi-
nomial (NB), Generalized Poisson (GP), Zero Inflated Poisson (ZIP) and Zero
Inflated Generalized Poisson (ZIGP). [12] fitted negative binomial and general-
ized Poisson regression models to Malaysian own damaged (OD) claim count
data and zero-inflated negative binomial and zero-inflated generalized Poisson
regression models were fitted to the German healthcare count data.[10] applies
generalized hurdle models suitable for the analysis of over-dispersed or under
dispersed count data allowing for asymmetric departures from the binary logit
model to Medicaid utilization data. [22] investigate alternative approaches to
constructing multivariate count models based on the negative binomial distri-
bution. They considered two different methods of modeling multivariate claim
counts using copulas. The first one works with the discrete count data directly
with the mixture of max-id copulas that allows for flexible pairwise association
as well as tail dependence. The second one employs elliptical copulas to join
continuitized data while preserving the dependency among original counts. The
empirical analysis looks into an insurance portfolio from a Singapore auto insurer
where claim frequency of three types of claims (third party property damage, own
damage, and third party bodily injury) are considered. The results demonstrate
the superiority of the copula based approaches over the common shock model.

[17], applied zero-inflated Poisson models to a micro level data set and made
comparisons to existing panel data models for count data. They showed that
separately controlling for whether outcomes are zero or positive in one of the
two years does make a difference for counts with a layer number of zeros. [14]
studied recreation demands and visitor characteristics of urban green spaces in
the Sapporo city area in Northern Japan. Recreation demands for 21 large urban
green spaces were estimated using a zero-inflated negative binomial model. [23]
applied the zero inflated poisson model to fishing data. [26] modelled accident
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risk at road level of multiple road networks in multiple cities of the Valencian
Community (Spain) using the ZINB model. [24], applied the zero inflated pois-
son factor model to microbiome read counts using data on oral infections, glucose
intolerance and insulin resistance. Their model assumed that the microbiome
counts follow a ZIP process with library size as offset and Poisson rates nega-
tively related to the inflated zero occurrences. ([2]) provided and extensive study
on the robustness of ZIP regression with varying zero inflated sub-models, they
proposed a more flexible alternative link function for the ZIP model. [16] applied
a multivariate zero inflated endemic epidemic model to measles count data from
16 Germany states. They found that by extending the HHH, endemic-epidemic
model using the Zero inflated model, they were able to capture seasonality and
serial correlation which in turn improves probability forecasts.In the application
of a Poisson regression model to examine spatial patterns in antenatal care (ANC)
utilization in Nigeria by 8, results revealed a significant difference in ANC between
never-married and married-women respondents. Results also showed substantial
spatial variation with a distinct north-south divide in ANC utilization. [18], ex-
plored disease mapping and regression with count data in the presence of over
dispersion and spatial autocorrelation. The outcome suggested that modelling
strategies based on the use of generalized Poisson and negative binomial with
spatial autocorrelation worked well and provided a robust basis for inference. In
2016, [9] investigated the spatial distribution of antenatal care utilization in West
Africa using a geo-additive zero-inflated count model and the results revealed a
tie, transcending boundaries especially among regions of Mali, Niger and north-
ern Nigeria where utilization remains persistently lower.

Although, the Nigerian economy seems to rock immensely our staggering pop-
ulation projected at over 180 million still makes us an attractive destination for
consumer goods and services especially new and used automobiles. The Nige-
rian road use laws (http://www.highwaycode.com.ng/iv-vehicle-insurance.html)
stipulate that an automobile user shall take out either third party or comprehen-
sive insurance policies, so that most people typically subscribe to some insurance
scheme majorly for statutory reasons. However, what we observed is that most
automobile users do not make claims even if they can legitimately make one.

This study compares the performance of Poisson and Negative Binomial hurdle
models, zero-inflated Poisson and Negative Binomial models, classical Poisson and
Negative Binomial regression models as well as the zero-inflated generalized com-
pound Poisson models to modeling number of auto insurance claims in Nigeria.
The model parameters are estimated using the method of maximum likelihood.
The models performances are compared based on the model selection criteria
(AIC and BIC) and the Gini index which compares the lift of a model against
another model.

The rest of this paper is structured as follows: In Section 2 , we discuss the
models considered, we give useful details regarding the Zero Inflated models in
Section 2.1 and that of the Hurdle models in Sections 2.2 . Section 3.1 describes
the data used. The results are presented in Section 3. Finally, Section 5 concludes.
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2. Materials and Methods

Count response variables are non-normal responses hence the need for the Gen-
eralized linear models(GLM) which extend standard linear regression models to
incorporate non-normal response distributions. GLM has three components viz:
the random component, the linear predictor and the link function given as:

f(λ) = β0 + β1X1 + · · ·+ βnXn (2.1)

Where X1, X2, · · · , Xn are explanatory variables, βi , i = 0, 1, · · · , n are the
intercept and regression coefficients. λ is the link function. The random compo-
nent of a GLM consists of a response variable y with independent observations
(y1, . . . , yn). The conditional distribution of each yi on a vector of regressors is a
linear exponential family with probability density function

given by:

f(y;λ, φ) = exp

{
y . λ− c(λ)

α(φ)
+ n(y, φ)

}
, (2.2)

where λ is the canonical parameter or link function; c(λ), the cummulant and
α(φ) is the scale parameter, set to one in discrete and count models and n(y, φ)
is the normalization term. The exponential family of distributions include the
Normal, poisson, Gamma, Binomial Negative Binomial etc. Common choices
for the link function include, identity (f(λ) = λ), log (f(λ) = lnλ) and logit
(f(λ) = ln λ

1−λ).
This paper considers the Poisson and Negative Binomial hurdle models, zero-

inflated Poisson and Negative Binomial models, classical Poisson and Negative
Binomial regression models as well as the zero-inflated generalized compound
Poisson model with link functions given as:

• Poisson = log(λ): The link function here results in a log-linear relationship
between mean and linear predictor. Recall that the variance in the Poisson
model is identical to the mean, hence, the dispersion is fixed at φ = 1.
• Negative binomial = log(λ): Similar to the Poisson model, the dispersion

is fixed at φ = 1.

2.1. Zero Inflated models. Zero-inflated models have been proposed as a class
of models more capable of dealing with excess zeros in count data than the classi-
cal GLMs ([19];[15]). They are two-component mixture models combining a point
mass at zero with a count distribution such as Poisson, geometric or negative bi-
nomial. Thus, there are two sources of zeros: zeros may come from both the
point mass and the count component. For modeling the unobserved state (zero
vs. count), a binary model is used: in the simplest case only with an intercept
but potentially containing regressors ([25]). Formally, Zero-inflated models mix a
point mass at zero I0(y) and a count distribution fcount(y;x, β). The probability
of observing a zero count is inflated with probability π = fzero(0;x, γ):

fzeroinfl(y;x, z, β, γ) = fzero(0;x, γ) · I0(y) (2.3)

+ (1− fzero(0;x, γ)) · fcount(y;x, β)
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Where I(·) is an indicator variable. The unobserved probability π of belonging
to the point mass component is modeled by a binomial GLM π = g−1(zᵀγ). The
corresponding regression equation for the mean is given as;

µi = πi · 0 + (1− πi) · exp(β>i x) (2.4)

using the canonical log link. The vector of regressors in the zero-inflation model
zi and the regressors in the count component xi need not to be distinct in the
simplest case, zi = 1 is just an intercept. The default link function g(π) in
binomial GLMs is the logit link, but other links such as the probit are also
available. The full set of parameters of β, γ, and potentially the dispersion
parameter φ (if a negative binomial count model is used) can be estimated by
ML. Inference is typically performed for β and γ, while φ is treated as a nuisance
parameter even if a negative binomial model is used.

2.1.1. The likellihood and log likelihood models for the ZIP models.

fzeroinfl(y;x, z, β, γ) = fzero(0;x, γ) · I0(y) + (1− fzero(0;x, γ)) · fcount(y;x, β)
(2.5)

Where, β is the coefficient of the count model and γ is the coefficient of the Zero
inflation model and

fcount(y;x, β) =
exp(−exp(βTx)(exp(βTx)y))

y!
(2.6)

Let θ = (γT , βT )T be the parameters to be estimated. The likelihood function for
the ZIP model can be described as:

L(θ) =
n∏
i=1

[
fzero(0;x, γ)

fzero(0;x, γ) + exp(βTxi)

]yi=0

(2.7)

×
n∏
i=1

{
[1− fzero(0;x, γ)]

exp(−exp(βTxi)(exp(βTxi)yi))
yi!

}yi>0

.

The log-likelihood function of the ZIP model is given as:

l(θ) = logL(θ) =
n∑
i=1

li(θ) (2.8)

=
n∑
i=1

logL
{

[Iyi=0)
[
log(fzero(0;x, γ)− log(fzero(0;x, γ) + exp(βTxi))

]}
+

n∑
i=1

logL
{

[I(yi>0)
[
log(fzero(0;x, γ) + (yiβ

Txi + exp(βTxi)− log(yi!))
]}
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2.2. Hurdle models. The hurdle model was originally proposed by [19]. They
consist of two-component models viz:

(1) A truncated count component, such as Poisson, geometric or negative
binomial, is employed for positive counts, and

(2) A hurdle component which models zero vs. larger counts.

For the latter, either a binomial model or a censored count distribution can be
employed [25].

Hurdles models combine a count data model fcount(y;x, β) and a zero hurdle
model fzero(y;x, γ). The models are such that fcount(y;x, β) is left truncated at
y = 1 and fzero(y;x, γ) is right truncated at y = 1:

fhurdle(y;x, z, β, γ) =

{
fzero(0;x, γ) if y = 0,

(1− fzero(0;x, γ)) · fcount(y;x,β)
1−fcount(0;x,β)

if y > 0.
(2.9)

The model parameters β, γ, and potentially one or two additional dispersion
parameters φ (if fcount or fzero or both are negative binomial densities) are esti-
mated by ML, where the specification of the likelihood has the advantage that
the count and the hurdle component can be maximized separately. The corre-
sponding mean regression relationship is given by

log(µi) = x>i β + log(1− fzero(0; zi, γ))− log(1− fcount(0;xi, β)) (2.10)

using the canonical log link. For interpreting the zero model as a hurdle, a
binomial GLM is probably the most intuitive specification. Another useful inter-
pretation arises if the same regressors xi = zi are used in the same count model
in both components fcount = fzero: A test of the hypothesis β = γ then tests
whether the hurdle is needed or not.

2.3. Model evaluation. We compare model performances by employing the
following penalised measures:

(1) Akaike Information Criterion (AIC): It penalizes the log-likelihood for
additional model parameters. AIC provides an asymptotically unbiased
estimator of the expected Kullback discrepancy between the generating
model and the fitted approximating model. it is computed as follows:

AIC = −2 lnL(θ̂k | y) + 2k. (2.11)

([21]). Where, k is a the number of estimated parameters in the model, θ̂k
is the maximum likelihood estimator of θ, the vector of k parameters and
L(θ̂k | y) is the log-likelihood function. Given a set of candidate models
for the data, the preferred model is the one with the minimum AIC value.

(2) Bayesian Information Criterion (BIC): It also penalizes the log-likelihood
for additional model parameters, however this penalty increases as the
number of records in the dataset increases. BIC provides a large-sample
estimator of a transformation of the Bayesian posterior probability asso-
ciated with the approximating model. it is computed as

BIC = −2 lnL(θ̂k | y) + k lnn (2.12)
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([21]). Where, k is a the number of estimated parameters in the model,

θ̂k is the maximum likelihood estimator of θ, the vector of k parameters
and L(θ̂k | y) is the log-likelihood function. In a set of candidate models
for the data, the one with the lowest BIC is preferred.

Note 2.1. It is noteworthy that AIC and BIC feature the same goodness-of-fit
term, however, the penalty term of BIC is more stringent than the penalty term
of AIC. (For n ≥ 8, k lnn exceeds 2k.) Consequently, BIC can be too restrictive
and tends to favor smaller models than AIC.

2.3.1. Gini Index. We evaluate the model lift using the Gini Index, (also called
the Gini coefficient or the Gini ratio). The Gini index is defined as

Gini =

∫ 1

0
(P − L(P ))dP

1/2
. (2.13)

The index is usually is defined on the basis of the Lorenz curve and is a measure of
the degree of income inequality in society. The Lorenz curve is best explained as
follows: For a given population, let y be personal income, x a pre-specified level
of income, F (x) a fraction of the population with y ≤ x with density function
f(x) = F

′
(x). Furthermore, denote the average income (assuming all income is

negative) by ȳ =
∫∞

0
yf(y)dy. The The lorenz function is a function L : [0, 1]→

R, satisfying,

P = F (x) =⇒ L(P ) =

∫ x
0
yf(y)dy

ȳ
. (2.14)

Where P is a proportion of the said population ([3] and [1]). The Lorenz curve
is simply the graph of (P,L(P )). The Lorenz curve is often accompanied by a
straight diagonal line with a slope of 1, which represents perfect equality in income
or wealth distribution; the Lorenz curve lies beneath it, showing the observed or
estimated distribution. The area between the straight line and the curved line,
expressed as a ratio of the area under the straight line, is the Gini coefficient, a
scalar measurement of inequality. Although the Lorenz curve is mostly used to
represent economic inequality, it can also demonstrate unequal distribution in any
system as in the case of this paper where we compare equality in the performance
of pairs of models. The farther the curve is from the baseline, represented by the
straight diagonal line, the higher the level of inequality.

A high value of Gini index means high degree of inequality in the distribution of
income. If everybody had the same income, then the Lorenz curve would coincide
with the 45o line and the Gini index would be zero. In the context of this paper,
a high value of Gini means a model has a higher lift than the other and if the
models were the same, the Lorenz curve would coincide with the 45o line on the
axis of the plot and the Gini index would be zero ([3]).

3. Result

3.1. Data. The data consists of 616 policies issued between 2011-2015 by an in-
digenous insurance company. The attributes available for consideration from the
data source include: year policy was taken, gender of the policy holder, class of
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the car (private or commercial), premium, insurance type (third party or com-
prehensive) and the number of claims. Table 1 below shows the summary of the
data considered. From Table 1 we see that the highest number of policies were
taken out between 2013 and 2014, more than 85% of these policies were taken
out by men. We also observed that most of the customers who took out policies
took them out on their private cars and there was a preference for comprehensive
insurance policies (>97%). It was further observed that all 17 third party insur-
ance policies recorded were private cars. Furthermore, we observed that about
91.72% of the policy holders made no claims so that the data does have many
zero (i.e. it is zero inflated). We also observed that 89% of the comprehensive
insurance policy holders had made no claims in the time period considered. In
addition, of the 91.97 zero claims, about 72.2% of them were private car owners
and the remaining 19.5% were commercial vehicles.

Table 1. Descriptive statistics of the data
Attribute Factors Frequency Percent

Year

2011 72 11.69
2012 101 16.40
2013 158 25.65
2014 200 32.47
2015 85 13.80

Gender
Male 526 85.39
Female 90 14.61

Motor class
Private 478 77.6
Commercial 138 22.4

Insurance type
Third party 17 2.76
Comprehensive 599 97.24

Claims
0 565 91.72
1 48 7.79
2 2 0.32
3 1 0.16

Figure1 represents the distribution of claims by premium. It can be observed
from Figure 1 that the bulk of the customers with no claims fall within the
lower average premium bracket. Furthermore, since the data consists of 97%
comprehensive and 3% third party insurance policy holders and none of the third
party insurance policy holders made any claims in the time period considered, we
thus base the analysis on comprehensive insurance policy holders only.
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Figure 1. Premium amount by number of claims

3.2. Model fit. The data was fitted to Poisson Hurdle (HurdlePois) and Nega-
tive Binomial Hurdle (HurdleNB), Zero-Inflated Poisson (ZIP) and Zero-Inflated
Negative Binomial (ZINB), classical Poisson (Poisreg) and Negative Binomial
(NBreg) regression models as well as the Zero-Inflated Generalized Compound
Poisson (ZIGCP) models. Table 2 shows the parameter estimates and the corre-
sponding standard errors for the fitted models.

Table 2. Poisreg, NBreg, ZIP, ZINB, HurdlePois, HurdleNB,
ZIGCP Models for Car Insurance Claims

Poisreg NBreg ZIP ZINB HurdlePois HurdleNB ZIGCP
Intercept 130.7(226.9) 102.1(231.7) -8.62(124.14) 54.22(254.34) -2.23(0.53) -2.23(0.53) -2.15 (0.48)

Gender -0.20(0.42) -0.21(0.43) 9.87(124.13) 22.36(95.72) -0.25(0.44) -0.25(0.44) -0.15(0.42)
Motor class -0.48(0.31) -0.46(0.32) -0.53(1.41) 40.03(265.11) -0.38(0.35) -0.38(0.35) -0.48(0.31)

premiums 0.0007(0.0002) 0.0008(0.0002) -0.004(0.002) -2.96(10.30) 0.001(0.0004) 0.001 (0.0004) 0.001(0.0002)

The Gini index (Table 3) and corresponding asymptotic standard errors (in
parenthesis) were computed based on the ordered Lorenz curve (Figure 2) for
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each of the 7 models considered. A pairwise comparison of the lift of the models
was computed by computing the Gini index scores using Equation 2.13. The Gini
index scores are reported in Table 3.

Greyed areas in Table 3 represents models with comparative better lift. We
observed from Table 3 (Greyed areas represent better lift) that the zero inflated
models as well as the hurdle models have better lift than the classical Poisson and
Negative Binomial models. Furthermore, the classical Negative binomial model
also has better lift than the classical Poisson model. The zero inflated models also
have better lift than the hurdle models. The zero inflated generalised compound
poisson model outperforms all the other models. In addition, according to the
”min-max” argument, the selected best model is the Zero inflated generalised
compound poisson model (ZIGCPM). It was observed that the GLM-type models
had the least performance.

Table 3. Gini Index scores with Corresponding standard errors
Poisreg NBreg ZIP ZINB HurdlePois HurdleNB ZIGCP

Poisson 0.00(0.0) 14.21(8.3) 16.99(8.4) 16.95(8.5) 20.65(7.7) 19.51(8.1) 19.80(7.9)

Negative binomial -11.12(8.7) 0.00 (0.0) 16.30(8.5) 16.30 (8.5) 21.19(7.8) 20.19(7.9) 18.03(8.2)
Zero inflated poisson -6.04(8.5) -5.05(8.6) 0.00 (0.0) -5.58(7.9) 0.59(8.8) 0.16(8.5) 5.84(7.7)

Zero inflated negative binomial -6.01(8.5) -5.06(8.6) 5.60(7.9) 0.00(0.0) 0.60(8.8) 0.13(8.5) 5.8(7.7)1

Hurdle poisson -12.28 (7.2) -13.49(7.8) 7.79(8.7) 7.81(8.7) 0.00(0.0) 7.06(7.8) 10.92(8.0)
Hurdle negative binomial -11.37(8.2) -12.73(7.9) 9.30(8.4) 9.33(8.4) -4.70(7.9) 0.00(0.0) 11.90(7.9)

Zero inflated generalised compound poisson -4.50(8.1) -2.21(8.3) 2.11(7.9) 2.16(7.9) 1.58(8.2) 2.08(8.1) 0.00(0.0)

Figure 2 is the plot of the ordered Lorenz curves for the data.
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Figure 2. Lorenz curve

The results of the model selection criteria (Akaike information criteria (AIC)
and Bayesian information criteria (BIC)) are presented in Table 4. It can be ob-
served here that between the classical models, the Poisson model was selected as
the better model (AIC=370.10 and BIC=392.08), between the Zero inflated mod-
els the Zero Inflated Poisson model was selected as the better model (AIC=374.11,
BIC=413.67) and with the hurdle models, the Hurdle Poisson model was also se-
lected as the better model. Overall, the results of the AIC and BIC reveal that has
the Zero inflated negative binomial has the highest AIC and BIC (AIC =376.11
and BIC=413.67) while the the Zero inflated generalised compound poisson had
the smallest AIC and BIC (AIC=234.93 and BIC=265.70) indicating that the
Zero inflated generalised compound poisson is the best model for capturing ex-
cess zeros in the claims data considered. This result agrees with that of the
Gini index as the ZIGCP model still shows up as the best model since it has the
smallest AIC and BIC.
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Table 4. AIC and BIC results for each model
AIC BIC

Poisson 370.10 392.08
Negative binomial 371.66 398.03

Zero inflated poisson 374.11 413.67
Zero inflated negative binomial 376.11 413.67

Hurdle poisson 372.91 408.07
Hurdle negative binomial 374.07 407.23

Zero inflated generalised compound poisson 234.93 265.70

4. Discussion

This paper applied poisson and Negative Binomial regression models, Zero In-
flated Poisson and Zero Inflated Negative Binomial mdoels, Hurdle Poisson and
Hurdle Negative Binomial models and zero Inflated Generalized Compound Pois-
son model to car insurance claims data to capture excess zeros in the dataset. It
has been observed that count data frequently exhibit over-dispersion in addition
to possible zero inflation. The selected dataset contains 91.72Hence the choice
of Zero inflated and hurdle models. We apply the Gini index to score models
that have a better lift (improvement on another model). As expected, the zero
inflated models as well as the hurdle models have better lift than the classical
Poisson and Negative Binomial models, reiterating the fact that classical regres-
sion models are not adequate for capturing the dynamics of zero inflated and over
dispersed data. In addition, the results of the AIC and BIC reveal that has the
Zero inflated negative binomial has the highest AIC and BIC (AIC =376.11 and
BIC=413.67) while the the Zero inflated generalised compound poisson had the
smallest AIC and BIC (AIC=234.93 and BIC=265.70) indicating that the Zero
inflated generalised compound poisson is the best model for capturing excess zeros
in the claims data considered.

5. Conclusion

This study applied seven models to claims data from an indigenous car insur-
ance firm. 6 of the models are in 3 different classes and the generalised model. The
models include the classical models class: poisson and Negative Binomial, zero
Inflated models class: Zero Inflated Poisson and Zero Inflated Negative Binomial,
Hurdle models class: Hurdle Poisson and and Hurdle Negative Binomial and zero
Inflated Generalized Compound Poisson. A comparison between the Poisson and
Negative Binomial model within each of the classes reveal the Poisson models
to be consistently better than the Negative Binomial models. However, the best
model overall model was was selected based on the lift which was determined
from the Gini index score and the information criteria viz (AIC and BIC) The
Gini index score as well as the AIC and BIC results selected the Zero Inflated
Generalised Compound Poisson model as the optimal model.
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