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EXISTENCE OF WEAK SOLUTIONS FOR THE
INCOMPRESSIBLE NONLINEAR PARABOLIC SYSTEM WITH

DAMPING

ADEYEMO K. M.∗

Abstract. This work concerns the existence of weak solutions associated with
the incompressible parabolic system with damping. We prove the existence of
the solution with initial data in the Lesbegue space, L2.

1. Introduction

We consider the following 3D parabolic system with damping term β|u|2u.

(PS)

 ∂tu− ν∆u+ (u · ∇)u+ 1
2udiv u− 1

ε∇div u + β|u|2u = 0 (t, x) ∈ [0, T ]× R3

u(0, x) = u0(x) in R3

|u| −→ 0, as |x| −→ ∞
(1.1)

where u(t, x) : [0, T ] × R3 → R3 is the velocity, u0 : R3 → R3 is the given
divergence-free initial data. The constant ν > 0 is viscosity and β > 0 is a pos-
itive constant. The damping term describes the fluid’s resistance to motion. It
describes various physical situations such as porous media flow and so on. The
damping term will make the solutions of this class of nonlinear parabolic sys-
tem better. In this paper we intend to understand the influence of the damping
term β|u|2u on the well-posedness of the system. The equation (1.1) is a dissipa-
tive nonlinear equation modelling certain features of the Navier-Stokes equations
(NSE). The NSE describes the evolution of a homogeneous viscous incompressible
newtonian fluid. The (PS) shares a number of features with the (NSE), both of
them have same scaling properties and energy estimate: if u(x; t) is a solution to
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(1.1) then λu(λ2t, λx) is also a solution for λ > 0

(NSE)

 ∂tu− ν∆u+ (u · ∇)u+∇p = 0 (t, x) ∈ [0, T ]× R3

∇ · u = 0
u(0, x) = u0(x) in R3

(1.2)

Leray[5] and Hopf[2] established the global existence of weak solutions of NSE.
Since then, many researchers have been working on uniqueness and regularity
(see [7,8] and their references). In [3], the authors proved the existence of global
solution of Navier-Stokes equation with the damping term f(u) = β|u|r−1u on
a 3D periodic domain, for values of exponent r > 1. In addition they proved
that global, regular solutions exist also for the critical value of exponent r = 3
provided both the viscosity of a fluid and the porosity of a porous medium are
large enough. In [9], authors showed that the Cauchy problem of the incom-
pressible NavierStokes equations with the damping term f(u) = α|u|β−1 (α > 0)
has global strong solution for any β > 3 and the strong solution is unique when
3 < β ≤ 5. In (1.2), u(t, x) : [0, T ] × R3 → R3 is the unknown velocity and
p(t, x) : [0, T ]× R3 → R is the corresponding pressure. The choice of the Lesbe-
gue space L2(R3) was made because of energy estimate. It is observed that the
energy inequality estimates only 1√

ε
divu in L2

tL
2
x or L2(0, T ;H1). To have control

over 1
ε
∇divu we need to see ∂tu as an element of the space dual to the space

of divergence-free vector fields in H1. In this case, the term that is constituting
problem will be equal to zero. (PS) has an advantage over (NSE) due its non-local
action as well as the absence of the pressure term. We believe that the study of
system (1.1) can enhance our understanding of (NSE) from the regularity theory
point of view . In [6] the authors studied a dissipative nonlinear equation mod-
eling certain features of the NSE. They proved that singularities do not occur in
dimensions n ≤ 4 for the evolution of radially symmetric compactly supported
initial data. For dimensions n > 4, they proved the existence of blow-up of solu-
tions numerically.
We introduce some function spaces and notations that will be used in this paper.
Lq(R3) denotes the Lebesgue space of order q, and the Lq-norm of a measurable
function f is denoted by ||f ||q, û denotes the Fourier transform of u. Given a
Banach space Y with norm || · ||Y , we denote by Lq(0, T ;Y ), 1 ≤ q ≤ ∞, the set

of functions f(t) defined on (0, T ) with values in Y such that
∫ T

0
||f(t)||qY dt ≤ ∞.

We use C to express an absolute constant. We apply the Galerkin method to
construct the approximate solutions and make a prior estimates to precede com-
pactness arguments. The remaining sections are planned as follows: In section 2,
we give some basic definitions and state a lemma. We give a brief description of
Galerkin method in section 3. Section 4 is devoted to establishing the existence
of weak solution to (1.1) when the initial condition is in Lesbegue space L2(R3).

2. Materials and Methods

The following operators are written as follows: divu =
∑3

j=1 ∂ju
j, u · ∇ =∑3

j=1 u
j∂j, ∆ =

∑3
j=1 ∂

2
j ,

u · ∇u = div(u ⊗ u) and div(u ⊗ u)j =
∑3

k=1 ∂k(u
juk). If the scalar product
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of (1.1) is taken in the L2-space with the solution vector field u, we obtain the
following for each term using integration by parts, we have

(u∇u | u)L2 =
∑

1≤j≤d

∫
R3

uj(∂ju
k)ukdx =

1

2

∑
1≤j≤d

∫
R3

uj∂j(|u|2)dx = −1

2

∑
1≤j≤d

∫
R3

(div|u|2)dx = 0

and −ν(∆u | u)L2 = ν||∇u||2L2

Definition 2.1: Given any T > 0, the function u(x, t) is said to be a weak
solution to (1.1), when the following conditions are satisfied:

1 u ∈ L∞(0, T ;L2(R3) ∩ L2(0, T ;H1(R3)) ∩ L4(0, T ;L4(R3))
2 for any φ ∈ C∞0 ([0, T ]× R3)) with divφ = 0, we have∫ T

0

∫
R3

(
∇u · ∇φ+ (u · ∇u+ β|u|2u) · φ+

1

2
u · φdivu− u · ∂tφ

)
dxdt =

∫
R3

u0·φ(., 0)dx

Definition 2.2: The function u(t, x) is said to be a strong solution to (1.1)
on (0, T ) × R3 if it is a weak solution and satisfies u ∈ L∞(0, T ;H1(R3)) ∩
L2(0, T ;H2(R3)) ∩ L∞(0, T ;L4(R3)).
The weak solution u to (1.1) is global if for all T > 0, it is a weak solution.
We state the following lemma which will be used in the proof of our theorem

Lemma 2.1 (Xiaojing Cai and Quansen Jiu, 2004 )
Given that Y0 and Y are Hilbert spaces that satisfy compact embedding Y ↪→ Y .
Let 0 < α < 1 and {vj}∞j=1 ⊂ L2(R;Y0) with supj(

∫∞
−∞ ||vj||

2
X0
dt) < ∞ and

supj(
∫∞
−∞ |τ |

2α||v̂j||2Xdt) < ∞. Then there exists a subsequence of (vj)
∞
j=1 which

converges strongly in L2(R;X) to some v ∈ L2(R;X).

2.1. Galerkin method. Galerkin method was invented by a Russian math-
ematician, Boris Grigoryevich Galerkin. The idea of approximating infinite-
dimensional by finite-dimensional problems is known as Galerkin method. It
is a well known device for doing numerical calculations by converting a contin-
uous operator problem (such as ode or pde) to a discrete problem. It is equally
useful as a theoretical tool (as it is used in this article). The following steps
are taken to show existence of weak solutions to a particular pde using Galerkin
approximations.

i Galerkin approximations
We build a weak solution of a pde say ut + Lu = f in ΩT

u = 0 on ∂Ω× [0, T ]
u = g on Ω× {t = 0}

(2.1)

We first construct solutions of certain finite-dimensional approximations
to (2.1) and then the solutions tend to some limits, the functions wk =
wk(x)(k = 1, ...) are assumed to be smooth. {wk}k=1,.... {wk}∞k=1 is an
orthogonal basis of H1

0 (Ω) and orthonormal basis of L2(Ω) respectively.
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The positive integer n is fixed. We look for a function un : [0, T ]→ H1
0 (Ω)

of the form

un(t) =
n∑
k=1

dkn(t)wk (2.2)

where dkn(t) ∈ R (0 ≤ t ≤ T, k = 1, ..., n). So that

dkn(0) = (g, wk)(k = 1, .., n) (2.3)

and

(u′n, wk) +B[un, wk; t] = (f, wk)(0 ≤ t ≤ T, k = 1, .., n) (2.4)

We seek a function of the form (2.2) that satisfies (2.4) spanned by {wk}nk=1

and an approximate solution is constructed.

ii Energy estimates
As m −→ ∞, we show that a subsequence of un converges to a weak
solution of (2.1). For this, some uniform estimates are needed. There
exists a constant C, depending on Ω and T such that

max0≤t≤T ||un(t)||L2(Ω)+||un||L2(0,T ;H1
0 (Ω))+||u′n||L2(0,T ;H−1(Ω)) ≤ C(||f ||L2(0,T ;L2(Ω))+||g||L2)

(2.5)

for n = 1, 2...
iii As n −→ ∞, we build a weak solution of the problem and pass to the

limits.

3. Result

The existence result is stated in the following:
Theorem 3.1:
Supposed u0 ∈ L2(R3). Then given T > 0, a weak solution u : [0, T ]× R3 → R3

of (1.1) in the sense of Definition 2.1 exists such that u ∈ L∞ ([0, T ];L2(R3)) ∩
L2 ([0, T ];H1(R3))∩L4 ([0, T ], L4(R3)) and sup0≤t≤T ||u||2L2 +2ν

∫ T
0
||∇u(t)||2L2ds+

1
ε

∫ T
0
||divu||2ds+ 2β

∫ T
0
||u(t)||4L4dt ≤ ||u0||2L2

Proof:
The proof is established in sequence as follows:
Step 1
We construct a weak solution un of finite-dimensional approximation of (1.1) and
the passing to the limits. Since H1 is separable and C∞0 is dense in H1, there
exists a sequence ω1, ω2, ω3, ..., ωn of members of C∞0 , in H1. For each n, an
approximate solution which satisfies the equation is defined as follows:

un(t) =
n∑
i=1

gin(t)ωi(x), (3.1)
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and by multiplying the equation by a test function wj ∈ C∞0 and integrating,
we obtain the following

(u′n(t), ωj) + ν(∇un(t),∇ωj) + (un(t) · ∇un(t), ωj) + (
1

2
un∇ · un, wj)

+
1

ε
(∇divun, wj) + (β|un|2un, ωj) = 0 (3.2)

t ∈ [0, T ], j = 1, 2, ..., n. and u0n −→ u0 ∈ Ḣs, as n −→∞.
Step 2

To show that a subsequence of the solutions un of the approximate problems
converges to a weak solution of (1.1), uniform estimates are needed on the ap-
proximate solutions and this follows from the following Lemma.

Lemma 3.1:
Let u0 ∈ L2. Then given any T > 0, we have

sup0≤t≤T ||un||L2 + ||un||L2(0,T ;Ḣ1) + ||divun||L2(0,T ;Ḣ1) + ||un||4L4(0,T ;L4) ≤ C,

Proof
Multiply both sides of (3.2) by gjn(t) and summing over j = 1, ..., n,. By integra-
tion by parts, we obtain the following for each term

(u′n(t), ωj)·gjn(t) =
3∑
j=1

∫
u′ngjnwj =

3∑
j=1

∫
u′nundx =

3∑
j=1

1

2

∫
d

dt
(un)2dx ≤ 1

2

d

dt
||un||2

and

ν(∇un(t),∇ωj) · gin = ν
3∑
j=1

∫
(∇un · ∇gjmwj)dx ≤ ν||∇un||2.

Similarly,
(un(t) · ∇un(t), wj) · gim = 0

1

ε
(∇divun, wj) · gin ≤

1

ε
||divun||2

and
β(|un|2un, wj) · gim ≤ β||un||4.

While we have used ((u · ∇)v, v) = 0, after getting the bound on each term, we
have

1

2

d

dt
||un||2L2 + ν||∇un||2L2 +

1

ε
||divun||2 + β||un||4L4dt ≤ C

Integrating on time t over (0, T ) , we obtain

sup0≤t≤T ||un||2L2+2ν

∫ T

0

||∇un||2L2dt+
1

ε

∫ T

0

||divun||2+2β

∫ T

0

||un||4L4dt ≤ ||u0||2L2

�
Step 3
Next we pass to limits as n → ∞ to build a solution of (1.1). Involking Lemma
3.1, the existence of approximate solutions is obtained: un ∈ L∞(0, T ;L2(R3)) ∩
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L2(0, T ;H1(R3)) ∩ L4(0, T ;L4(R3)). By using Lemma 2.1, we prove that un (or
its subsequence) convergences strongly in L2∩L4([0, T ]×R3). ũn is denoted as a
function from R into H1 and has the same value as un on [0, T ] and zero on it’s
complement. In the same vein, gin(t) is extended to R by giving the definition
g̃in(t) = 0 for t ∈ R\[0, T ]. The Fourier transform on variable t of ũn and g̃in is

given by ˆ̃un and ˆ̃gin respectively. The solutions ũn satisfy

d

dt
(ũn, ωj) = ν(∇ũn(t),∇ωj)+(ũn(t)·∇ũn(t), ωj)+

1

2
(ũn(t)∇ũm(t), ωj)+

1

ε
(∇divũn(t), ωj)

+ (β|ũn|2ũn(t), ωj) ≡ (f̃n, ωj) + (β|ũn|2ũn, ωj) j = 1, 2, ..., n. (3.3)

where

(f̃n, ωj) = ν(∇ũn(t),∇ωj)+(ũn(t)·∇ũn(t), ωj)+
1

2
(ũn(t)∇ũn(t), wj)+

1

ε
(∇divũn(t), wj).

If the Fourier transform is taken about the time variable, (3.3) becomes

2πiτ(̂̃un, ωj) = ( ̂̃fn(τ), ωj)+β( ̂|ũn|2ũn(τ)n, ωj)+(u0n, ωj)−(un(T ), ωj)exp(−2πiTτ).
(3.4)

where ˆ̃fm is the Fourier transforms of f̃n.
Using ˆ̃gjn(τ) to multiply (3.4) and add for j = 1, ..., n to get:

2πiτ ||(ˆ̃un(τ)||22 = ( ˆ̃fn(τ), ˆ̃un)+β( ̂|ũn|2ũn(τ), ˆ̃un))+(u0n, ˆ̃un)−(un(T ), ˆ̃un)exp(−2πiTτ).
(3.5)

For any v ∈ L2(0, T ;H1) ∩ L4(0, T ;L4) we have

(fm(t), v) = (∇un,∇v) + (un · ∇un, v) +
1

2
(∇un∇ · un, v) +

1

ε
(∇divun, v)

≤ C(||∇un||22 + ||∇un||2 + ||∇un||22 + ||divu||2)||v||H1 .

Given any T > 0, it follows that∫ t

0

||fn(t)||H−1dt ≤
∫ T

0

C(||∇un||22 + ||∇un(t)+ ||∇un||22 + ||divu||22)dt ≤ C (3.6)

and hence

supτ∈R|| ˆ̃fn(τ)||H−1dt ≤
∫ T

0

||fn(t)||H−1dt ≤ C (3.7)

We have from Lemma 3.1 that∫ T

0

||un||2
L

4
3
dt ≤

∫
||un||3L4dt ≤ C

which implies that

Supτ∈R|||u|2u||L 4
3
(τ) ≤ C (3.8)

From Lemma 3.1, we have

||un(0)|| ≤ C, ||un(T )|| ≤ C (3.9)
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We deduce from (3.5) - (3.9) that

|τ |||ˆ̃un(τ)||22 ≤ C(||ˆ̃un(τ)||H1 + ||divˆ̃u||L2 + ||ˆ̃un(τ)||L4)

For 0 < α < 1
4
, it is noted that

|τ |2α ≤ C
1 + |τ |

1 + |τ |1−2α
, ∀τ ∈ R

Thus

∫ ∞
−∞
|τ |2α||ˆ̃um(τ)||2L2dτ ≤ C

∫ ∞
−∞

1 + |τ |
1 + |τ |1−2α

||ˆ̃um(τ)||2L2dτ

≤
∫ ∞
−∞
||ˆ̃um(τ)||2L2dτ+C

∫ ∞
−∞

||ˆ̃un(τ)||HI

1 + |τ |1−2αdτ
+C

∫ ∞
−∞

||divˆ̃un(τ)||L2

1 + |τ |1−2α
dτ+C

∫ ∞
−∞

||ˆ̃un(τ)||L4

1 + |τ |1−2α
dτ

(3.10)

By Lemma 3.1 and Perseval equality, the first integral on the rhs of (3.10) is
uniformly bounded on m.
By the Parseval equality, the Schwarz inequality and Lemma 3.1, we have∫ +∞

−∞

||ˆ̃un(τ)||H1

1 + |τ |1−2α
dτ ≤

(∫ +∞

−∞

dτ

(1 + |τ |1−2α)2

) 1
2
(∫ T

0

||un(t)||2H1dt

) 1
2

≤ C,

(3.11)
for 0 < α < 1

4
Also, we have∫ +∞

−∞

||divˆ̃un(τ)||L2

1 + |τ |1−2α
dτ ≤

(∫ +∞

−∞

dτ

(1 + |τ |1−2α)2

) 1
2
(∫ T

0

||divˆ̃un(τ)||2L2(τ)dτ

) 1
2

≤ C

∫ +∞

−∞
(||divun(τ)||2L2dτ)

1
2 ≤ C (3.12)

and for 0 < α < 1
4
, we have

∫ +∞

−∞

||ˆ̃un(τ)||L4

1 + |τ |1−2α
dτ ≤

(∫ +∞

−∞

dτ

(1 + |τ |1−2α)
4
3

) 3
4 (∫ T

0

||ˆ̃un(τ)||4L4(τ)dτ

) 1
4

≤ C

∫ +∞

−∞
(||ˆ̃un(τ)||

4
3

L4dτ)
3
4 ≤ C(

∫ T

0

||un||4L4dt)
1
4 ≤ C (3.13)

It follows from (3.10) ∫ +∞

−∞
|τ |2α||ˆ̃u||m(τ)||22 ≤ C (3.14)

From Lemma 2.1, Lemma 3.1 and (3.14) we obtain that there exists a subsequence
of un given by un such that un −→ u strongly in L2(0, T ;L2) and ∇un ⇀ ∇u
converges weakly in L2(0, T ;H1), divun ⇀ divu converges weakly in L2(0, T ;H1).

un −→ u converges strongly in L4(0, T ;L4) as
∫ T

0

∫
R3 |u|4dxdt ≤ C. These con-

vergences show that u(x, t) is a weak solution of (1.1). �
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