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ITERATIVE INTERVAL FORMULAS FOR SYSTEM OF EQUATION IN 
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ABSTRACT.   Given a map YXF :  acting between two topological 

spaces X and Y , it is pertinent to ask if the path from a point X  to a pointY  

is a closed path, and under what conditions can the topological space from X  

to a topological space Y  be said to be contractible to a point? We give answers 

to this poised question using the concept of hemi-continuity for F-

differentiable function and the Banach Fixed point theorem. Furthermore, 

solving the resulting linear system of equation for the map nn RRF :  

using either Guassian or LU decomposition, we again ask under what condition 

can we say that Guassian elimination method or LU Factorization cannot 

compute exactly the inverse of the matrix. .In this paper, we give such error 

bounds for the LU  Factorization and the resulting residual error estimate for 

system of equation. We realized our solutions to systems of nonlinear 

equations using the interval LU Factorization, the interval Gauss-Siedel 

iteration and the Krawczyk’s interval method with guaranteed error bounds. A 

ray tracing implicit surface for the obtained solution is described and a 

normalized distance between imaging and distortion of a ray tracing implicit 

surface in the obtained solutions from the nonlinear system is computed.  

 

1. INTRODUCTION 
 

The first aim of this paper is to show that there are convergent and monotone iterative 

formulas for the multivariate equations relating to Newton methods and their variants Ortega 

and Rheinboldt (2000) in topological spaces. 

We extend the presentation using circular interval arithmetic in the sense of Uwamusi

 a2010,2009 .   It was showed in the affirmative that there exists a normalized distance 

between imaging and distortion of a ray tracing implicit surface Brunet et al (2017) in the 

solution to the interval nonlinear system of equations using interval LU Factorization, 

interval Gauss- Siedel method and Krawczyk’s algorithm . 
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1.1 Preliminaries/Literature Review 

Let 
nn RRDF :  be defined and continuous at the point Dx 0 . Given any 0  and a 

0)(   there is a ball   DxS ,( )0(
 such that the F derivative exists and is given by

      ,(,,)))(()()( )0()()()()()()(0/( xSxxxxxxxFxFxF nmnmnmnm    (1.1.1) 

We discuss the presentation in the context of topological spaces and give conditions under which a 

map from one topological space X  to another topological spaceY be a contraction map, that is, a 

fixed point operator in the sense of F-differentiable function and the well-known Banach Fixed point 

theorem Ortega and Rheinboldt (2000). We relate that a Baire space PolishSuslin K -Suslin

quasi-Suslin spaces and that every Frechet space is strongly hyper complete Iyahen (1998) and 

Karlova (2016) which also holds true for the dual of a reflexive Frechet space in the strict sense. We 

rely Uwamusi (2004) on the existence of a strong form of Meanvalue theorem and continuity of F-

derivatives of the map. 

We explain what role each of the open and closed mapping theorems strive to achieve in the 

discussion of continuity of two metrics in topological vector space.It is stressed that a topological 

space is a connected space which cannot be represented as the union of two disjoint non- empty open 

sets. The importance of Lebesgue number for the cover of each XD  with a diameter   an 

important topic in topology was also stressed. Motivation of the paper is as follows refreshing the 

ideas as given in Ortega and Rheinboldt (2000): 

Let 
nn RRDf :  be defined and continuous in the domain

nRD  . A point Dx *  is a local 

minimizer of f  if there bean open neighborhood S  of *x  such that for all DSx  , then  

)()( *xfxf  ,                      (1.1.2)                  

                            

*x is a proper local minimizer of f if strict inequality holds in equation (1.1.1) for all 

*, xxDSx    

To buttress interest in the presentation, firstly, a well-known univariate functional map

1: RRDf n   connected on D , is assumed by the readers given that every level set of f  is path 

connected. 

Fundamentally in this direction, are the basic tenets of path connectedness of a functional in the sense 

of Ortega and Rheinboldt (2000) as follows: 

Abstractly, the map
nn RDf :  is a convex functional on 

nRD   if given that )(L  is any level 

set of f  and  
    )(, Lxx nm   for all )1,0(t for which holds the inequality: 

        )1()()1()()1( ))( ttxftxtfxttxf mnmn  .                 

(1.1.3) 
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Since )(L  is convex and path connected, the functional )(: 00 DxRDf n  shall be represented 

by the equation: 

  

    







1

0

)0()()0()0()0()0(

)0()0(

1

0

(

])()([)(

))(()(

dtxxtxfxxtxgxx

dtxxtxgxxxf

mT

T

nm

                (1.1.4)                                                                                                                   

The concept of criticality which is an important aspect in the theory of global minimum in the F- 

differentiable function for the nonlinear system of equations which very important is hereby brought 

to bear in the analysis. To this end, we state the following theorem for a useful purpose. 

Theorem 1.1, Ortega and Rheinboldt (2000). Assuming 
nn RRDf :  has a G-derivative on an 

open, bounded set DD 0  and that f  be continuous on 0D . Let there exists an 
 

0

0 Dx   such that 

   )(0 xfxf   for all x  on the boundary of 0D , then f  has a critical point in 0D . In addition, it 

holds that  

                     0

0
2

2

)(// ,,, DrxSxxxxxxxfxf nmnmnmnm  ,              (1.1.5)        

Moreover, 
   rxf

2

10/   where, r  is the radius of the Riemann sphere. This means that f  thus 

have, a critical point in  
  rxS ,0

. 

The concept of a hemivariate function as a prelude to the presentation of multivariate functions is 

important for our analysis to the criticality of global minimization of a continuously differentiable 

functional. Thus, a functional
nn RRDf :  is hemivariate on a set 

nRD 0  if it is not constant 

on any line segment of 0D , and if there exists no distinct points 
   

0

10 , Dxx   such that  

     
0

101 Dtxxt  , where for instance, 
      )1,0(),())1(( 010  txftxxtf . 

Thus, for a given a map
nn RRDf : , a sequence 

  kx  in some subset DD 0  is strongly 

downward (downhill) in 0D  if given ]1,0[t , then there holds the estimate 

             ]1,0[,1 11   txftxxtfxf kkkk
.                                              (1.1.6) 

From practical experiences, it is known that for a convex functional F , the strong form of Meanvalue 

theorem for the function defined on the domain 
nRD   shows that if

  )()( 0)0( xxtxFtg  is a 

continuously differentiable function in the interval ]1,0[ , then 
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).()]0(,[

)))((()()0()1()()(

)0(

1

0

)0()0()0(/

1

0

/)0(

xxxxF

dtxxxxtxFdttgggxFxF



 
         (1.1.7) 

Thus in the sense of Ortega and Rheinboldt (2000), there follows: 

The Gateaux differentiable (or mildly, F -differentiable) F on a convex set 
nRD 0 is that, given 

any 0, Dxx mn  , we have that     nmnmn
t

nm xxxxtxFxFxF 


)(sup)( /

10

. 

Therefore, a function F defined at the point vector 
nRx 0  is said to have a strong G- Gateaux 

derivative or respectively, an F - derivative if given any 0  there is a 0)(   such that 

DxS ),( 0   there holds ),(,,))(()()( 00

/  xSxxxxxxxFxFxF nmnmnmnm  . 

It follows that by definition of hemi-continuity for the Gateaux differentiability F the inequality holds: 

  nmnmnmn xxxxMxFxxxF   )()( ,                                                 (1.1.8) 

for small enough  and 1  with   


nmn
t

xxtxFM (sup /

10

. 

The remaining part in the paper is categorized as follows. Section 2 in the paper discusses the 

question of abstraction of iterated map and compactness in topology. The notion of Baire space in the 

contexts of Banach ultrbornological space is discussed. It is stated that a topological space X with its 

set of all subsets is completely uniformable and Hausdorff, if it is Polish, metrizable, complete and 

separable. Furthermore, in the sense of Borsik et al (2011) and Bourles (2011), it is showed that 

Polish space implies Baire space and that inexhaustible density of F imply a Baire’s Second Category 

theorem. It is stated that a Gauss-Siedel iteration has an effective covering property which connotes 

effective inclusion property. 

It is further showed that a functional iterative Newton’s method forms the basis of existences of many 

iterative operators for system of equations based on the adoption of Kantorovich theorem. Here, it is 

showed that Newton’s iteration will halt to an end if certain conditions are met. We give the question 

of weak and strong regular splitting which induces the Gauss-Siedel and Successive overrelaxation 

iterative methods Uwamusi (2004) in this class. In section 3, the backward error bounds occurring in 

the perturbed system of linear equations is presented in the senses of Bjorck (2009), Varga (2000). 

We give conditions under which the Gaussian elimination method as well as LU Factorization method 

cannot compute exactly the inverse of a matrix in the ideas of Golub and Van-Loan(1983) . Later in 

the section 3, it is given that computation of imaging and distortion with a ray tracing implicit surface 

maybe obtained based on the knowledge of results obtained from these interval operators of Newton’s 

method and Krawczyk’s algorithm. We give basic Circular interval arithmetic properties and 

numerical example demonstrated with modified interval Gauss-Siedel method, Krawczyk’s method in 

the sense of  Uwamusi (2009, 2011), a version of chainable maps. Thereafter, normalized distance for 

the imaging and distortion for a ray tracing implicit surface is calculated. Discussion of results in the 

paper is effected in section 4.In section 5 we make conclusion based on the strengths of our findings.  
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2.   MATERIALS AND METHODS 

We borrow the following two definitions from the work of   Bourles (2011), namely: 

2.1 The Question of Abstraction of Iterated Map and Compactness in Topology: The 

Fundamental Baire Space. 

Definition 2.1. Let YX ,  be two topological spaces and YXF :  be a map. The map F  is 

continuous (respectively sequentially continuous ) if , and only if for any point Xx , whenever 

 ix  is a net (respectively a sequence ) in X  converging to ix , the net (respectively the sequence) 

 )( ixF  converges to )(xF . 

Definition 2.2. The graph )(FGr  of F  is said to be closed (respectively, sequentially closed) if, and 

only if whenever   ii xFx ,  is a net (respectively a sequence) in YX   converging to  yx, , 

necessarily   )(, FGyx r , that is,  xFy  . 

As is well known, a topological space is a Baire space provided that we take into consideration the 

countable collections of dense open subsets which haveBorsik et al (2011) a dense intersection of 

second Baire Category. The Baire Category is considered in the context of dense function in our 

presentation see for example Karlova (2016). A space which contains a dense Baire subspace is 

Baire.To begin with as an illustration to this, let X  be a complete metric space, that is, the space 

equipped with bounded and convergent Cauchy sequence. Let iU  be a sequence of dense open sets in 

X and assume that 00 DB  .Then, there could be found a nested sequence of closed balls

..........210  BBB  in the domain 0DX   which induces: 

 kkk UBB 1 ,with diameter 


 kas
k

BB kk 0
1

1
1  wherein, )

1
,(
k

xB  forms a 

ball at x in the metric space. From this, it follows that the generated kU coincide with the interior of

kB that stabilizes for the centers of the balls kB by inductive Cauchy sequence   iUBx 0

where , Xx . 

Being inspired in this direction, we take a note of the following points which are assumed to be 

familiar to the readers. 

A subset F of a metric space will be called a closed set if it contains each of its limiting points. Thus 

if X  be a metric space and Xx with xxF )( , a point x  is called an interior point of F  if it is the 

Centre of some open sphere contained in F .Practically, it follows that for a metric space ),( X  

with Xx  and for 0 , the     vxXvxu ,),( is an  -disc. 

Via inclusion theorem, for two metric spaces ),( X and ),( Y , a function YXF :  will be 

continuous at Xx  if given 0 there exists a 0  such that       ),(, xFuxuF  . 
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If the sequence has a convergent net, what then is the nature of the shrinking base? To answer this 

question, let  ,X  be a metric space. A subset 
  XX k   is called  -net if Xx , 

   kXxd ,  

so that the  metric space  ,X  is totally bounded if and only if for 01   one can find a finite 

 -net for which the above assertions hold. There is a contracting map from the metric space 

XX   given a real number , )10(  , such that for all points Xnm , ,one can find that

  ),(),()(),( nmdnmdnfmfd   . 

This means that every contracting space is Hausdorff, particularly a category 
2T -space, given that

Xx implying xxf )(  (by fixed point theorem).We thus have erected a structure of contraction as 

follows: 

Given a point Xx 0  and the iterated map YXDF : .By the well-known Banach fixed point 

theory in place, it follows that ...),()(),...,()(),( 010

2

1100 xfxfxxfxfxxfx k

kk    

We thus have created a set of points (vectors)  ...,,, 321 xxx  that is Cauchy with the metric topology 

   0000 ),()(),( xxfdxfxfd nmnm 
, (where ,1 Nnm , ) and with the sum of the 

sequence 

 








1
...1 32

m

m
. 

Having noted what a complete metric space topology connotes, and turning our attention again to a 

Baire space, we in the vicinity of compactness, noted that a dense subspace of a convex Baire space is 

convex-Baire. However, a convex Baire space needs not be complete, Iyahen (1998),Chidume 

(1995).This raises a fundamental question what actually a Baire in topological vector space aims at –

the density of F ? 

A Baire in Topological vector space is a set which is convex, balanced, absorbing and closed. Thus, a 

barreled space is a locally convex space in which every barrel is a neighbourhood of origin O .A 

Banach space is barreled, just as an ultrabornological space is barreled see e.g.,Iyahen (1998). To wit, 

it follows that a Hausdorff locally convex space isultralbornological if it is an inductive limit of 

Banach spaces. A family B  of subset of a topological space X  is called a base for a mapping 

YXf :  if the preimage )(1 vf 
 of an arbitrary open set Yv  is a union of sets from B . Thus if

X is a Baire Space and Y  is a metric Space, the point-wise limit of YXf :  is a sequence from 

),( YXG which has a set )( fC  dense rG -set. Note that for every function YXf : , the graph of 

f  is defined by   XxxfxfGr  :)(, . 

The open mapping theorem shows that a bounded linear surjection of a Banach space X  into a 

Banach spaceY  is an open mapping. We give a stronger version of open mapping theorem – the 

Banach-Steinhaus theorem in the sense of Chidume (1995) as follows: 
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Let F  be a bounded linear map from a Banach space X  into a normed linear spaceY . If the image 

][XF is non meagrein Y , then F  is subjective, i.e., YXF ][  which is dense in topology. 

In the realm of computable analysis and topology we include uniform continuity, compactness, for an 

operator functional equation. The notions of absorbent map, fundamental sequence of bounded sets 

are important.  

The closed graph theorem, open mapping theorem, hyper- complete metric space, reflective Frechet 

space, B -complete linear topological space are all webbed. As pointed out in Iyahen (1998), it is 

stated that the link between the closed graph theorem, B -complete and 
rB -complete locally convex 

spaces can be obtained from the two assertions, namely: 

(i) Every closed linear nearly open one-to-one map from E  onto any Hausdorff locally 

convex space is open. E being the Euclidean space. 

(ii)  Every closed linear nearly continuous map from any Hausdorff locally convex space into 

E  is continuous. 

Therefore, it is instructive to note that a Hausdorff space is called ultrabornological if it is an 

inductive limit of Banach spaces. 

We henceforth give such categorizations of a Hausdorff space as follows: Let X be a topological 

space and )(X  (resp. ))(X be the set of all subsets (resp. of all compact subsets of X ),the 

topological space X is  

(i) Completely regular if it is uniformable  and Hausdorff; 

(ii) Polish,  if it is metrizable, complete and separable; 

(iii) Suslin,  if it is Hausdorff and there exist a Polish space and a continuous surjection 

XP  ; 

(iv) Lindelof, if, from any open covering, one can extract a countable covering. 

A topological space is Lindelof if every open cover has a countable sub- cover. By local compactness 

in a topological space X , we mean an open set U  whose closure 
_

U  compact forms a neighborhood 

base for the topology. 

A completely regular topological space is K -Suslin if, and only if, it is K -analytic. In the sense of 

Bourles (2011),a Polish space, Suslin space, K-Suslin space  and the Quasi—Suslin space are webbed 

in the sense that: 

(a) PolishSuslin K -Suslinquasi-Suslin; 

(b) Polish Baire (Baire’s theorem)  non meagre in itself  inexhaustible  of Second 

category; 

(c) K SuslinLindelofpara-compact; 

(d) 2nd  countableLindelof   and 2nd countable   1st countable separable. 

It is known that every Frechet space is strongly hyper complete and the dual of a reflexive Frechet 

space is strictly hyper complete. 
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Therefore, Gausss-Siedel iterative type method as well as the Successive Over-relaxation method 

(SOR) given ahead in section2 in the paper fits into this advantage of above descriptions and admits a 

linear space with a countable dimension of a linear topology under which it is 
2

B  - complete and its 

linear subspace, the Jacobi iterative method is closed and converges on the entire dense subset of the 

Gauss-Siedel map. Notably, in abstraction, we mean a generic measure preserving homeomorphism of 

the square with a dense orbit. Motivated by the above enumerations we are led by the following facts. 

Definition 2.3, Collins (2005). A computable topological space  vX ,,,   is a computable 

Hausdorff space if  ,X  is a locally compact separable Hausdorff space, and B  is a base for   such 

that BI   is pre-compact. 

Under this condition, the Gauss-Siedel and SOR operators are required to have effective covering 

properties which connote the effective inclusion property with the pullback diagrams not undermined. 

Let U  be an open cover and xxf )( where, Xx  .A sequence 
)()1()0( ,..., nxxx  is a U -chain 

Uwamusi (2016) for F if there exist points Xzzz k ...,,, 21  and open sets UUUU n ,...,, 21  such 

that )( )()1( ii xFz 
 and

 
1

1)1( , 

  i

ii Uzx for 1,...,2,1,0  ni . 

For a given reachable set Reach    )()2()1()0()0( ,,,:,, nxxxxchainXxXF    for F  such 

that given )0()0( Xx  and xx n )( , the set of points reachable from 
)0(X  by a   -chain, the chain-

reachable set for F  from 
)0(X  is given by 

Chain Reach 
    



,,Re, )0()0( XFachXF   where   runs over open covers of X . 

The above notion of a multivalued map will be a useful a tool for our work in this paper. It will hold 

that a multivalued map is (weakly) continuous if it is both lower-semi-continuous and (weakly) upper 

–semi-continuous. This means that, the map F  is lower-semi-continuous whenever 

   )()( XFclXclF   for any set X with     )()( xFGclxFGcl  . 

The main idea in the above is motivated by the following facts, namely: 

Assuming that k
k

FF


 lim  is a strict countable inductive limit, 

(i) The topology induced in kF  by that of F  coincides with that of F  which by 

implication, is the topology of F which is Hausdorff. 

(ii) If kF  is closed in 1kF for every k , then F  is complete. 

(iii) The topology of F  is the finest topology among all topologies computable with the 

vector space structure of F  (locally convex or not) which induces in kF  a coarser 

topology than the given topology k . 
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2.2  The Functional Iterative Methods 

 

Specifically, Newton’s method cuts across the fundamental basis for presenting and analyzing results 

of both univariate and multivariate systems of equations. In abstraction, Newton’s method is given by  

   
  
  

,...)2,1,0(;
/

1  k
xf

xf
xx

k

k
kk

                                                    (2.2.1)

 

Let
nRD   be open. Let a sequence ,..., 21 ff  from )(DF  converges locally uniformly in D  to a 

function f  so that nRDDFf  ,)( . Then in the sense of Berg (2012), the sequence ...,, /

2

/

1 ff  of 

derivatives converges locally uniformly in D to
/f if DDF )(  holds true. This is one of the basis in 

which various modifications of Newton’s methods are derived. 

We say that a sequence 
   ,..)2,1,0(, kx k

 is said to be (at least) linearly convergent to *x  if there 

is a number )1,0(q  and a number 0c  such that  

  1,*1  icqxx ik
.                                                                                                       (2.2.2) 

Within the vicinity of expositions as a prelude to obtaining results, we give more facts pertaining 

existence solutions to the map nn RRDF : based on the assertions of Kantorovich theorem 

given below. 

Theorem (2.2.1),Ortega and Rheinboldt (2000).Let nn RRDF :   be an F -differentiable 

function on a convex set DD 0  and assume that  

          ),1(, 0

1/1/ DkkxxxFxF kkkk                                                   (2.2.3) 

Assuming further that there exists
 

0

0 Dx  such that  

   ,
10/ 


xF and, 
2

1
   where     )0(10/ xFxF


 . 

By setting as  

   









2

1
1* 211 t ,                                                                                         (2.2.3) 

   









2

1
1** 211 t ,                                                                                       (2.2.5) 
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for   0

*)0(

2

, DtxB 


 , for which the iterates are well defined and, remain in  *)0(

2

, txB


  converging to 

a solution *x  of 0)( xF  which is unique in   0

**)0( , DtxB  . Via Kantorovich theorem, the 2  

Newton operator remains in 
  *0 , txB



  and converges to the solution *x  of 0)( xF which is 

unique in 
   0

**0 , DtxB  whenever holds the error estimate  

      ,...)1,0(,22
21* 


kxx

k
kk  .                                                                    (2.2.6) 

Thus for p order  iterative process converging to *x  whose multiplicity  of the roots is 2m for the 

system of equation 0)( xF in the sense of Lagouanelle’s limiting formula Farmer and Loizou 

(1997),Petkovic and Trikovic (1995), Uwamusi (1999) assuming that mp  ,the inequality  

 

 
  **1

2

1
1 xx

pm

p
xx kk 














,                                                                                  (2.2.7) 

and converges to the desired solution *x monotonically. Therefore, the iterative process will come to 

an end when  1kx  has more significant 
m

s
 correct digits than does )(kx . This is usually estimated 

Petkovic and Trikovic (1995),Uwamusi (1999),2004) in the form : 

m

sk

t
xx

xx 






*)0(

*)(

                                                                                                               (2.2.8) 

Here, t  is the base arithmetic and s  is machine accuracy. Equations (2.2.7) and (2.2.8) hold verbatim 

also for a univariate function. 

 

3.2 The Question of Weak and Strong Regular Splitting 

We use notation 
  kxA  as representing Jacobian matrices at the vector  kx . Then, the splitting 

matrix is given in the form: 

         ,...)1,0(,  kxCxBxA kkk
                                                                            (2.3.1) 

Following Varga (2000) and letting A denotes )( )(kxA , )(),( )()( kk xCCxBB  then it holds that

CBA   is a weak regular splitting of )( nRLA if OBOCB   11 , and OCB 1

.Therefore, the matrix   CCACB
11    exists. 
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Using the above as stated, further analysis leads to GGICB 11 )(   for CAG 1  . Therefore, the 

eigenvalue   of the matrix G has the corresponding eigenvector  for the matrix eigenvalue 

problem in the form  G  so that






 

1
)( 1GGI . Because 





1
 is a decreasing function 

of in order of magnitudes of   then,   11  CB  which again coincides with the assertions that  

   
 

1
1 1

1
1 









CA

CA
CB




  for OA 1

.Thus the matrix regular splitting of equation (2.3.1) is 

feasible. 

This leads us to the concept of Successive Over- relaxation method  SOR in the sense expressed in 

Hageman et al (1980) and Wasilkowski (1980) with further details in the form. 

The classical SOR  iterative method is in the form 

   
 Cxx kk 1

                                                                
 (2.3.2) 

Wherein, defined that 

    UDLD  


1
1

 (2.3.3) 

   RbLDC 


 ,
1

  (2.3.4) 

The term   appearing in the equation (2.3.2) is the relaxation parameter. The optimum relaxation 

parameter )20(   in the Jacobi iteration matrix B, see e.g.,Young (1971) that minimizes     

for the SOR  method in the form equation (2.3.3) is the expression: 

2

22 11
1

11

2
)(


























 bb                                                                    (2.3.5) 

Wherefrom,     11  bb
   for all 20  and b  . Let us take notice that for 

1 the SOR  iteration formula degenerates to Gauss-Siedel iterative method. 

The asymptotic decay in the norms of the error vectors ke  corresponding to the sequence of vectors 

 
0kkx  obtained from SOR  method is the quantity 

 
2

1

000

suplim,















 e

e
pK

k

ek
k                                                                                                         (2.3.6) 

In equation (2.3.6), the term p  is the order of the polynomial or a matrix. 

Empirical estimate has it that 8] we link the Young’s functional Young (1971) relationship  
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  222
1   ,                                                                                                                  (2.3.7) 

between the eigenvalues  of the SOR iteration matrix   with eigenvalues  of Jacobi iteration 

matrix B in the form: 

 
     

     








10,1,0,

0,,1,

21

12

,



                                                                       (2.3.8) 

Where,  

 
 

2
22

11
2

14
,













 



                                                                             (2.3.9) 

 
 

2
22

22
2

14
,













 



                                                                           (2.3.10) 

This guarantees that   21, and,  ,1  . 

We measure average rate of convergence Varga (2000) according to the following definition. 

Definition 2.3.1,Varga (2000). Let   and  be two nn real matrices. If for some positive integer k

, 1kA , and     
k

A
AAR

k

kkk
ln

ln
1 
 will be the average rate of convergence for k  

iterations for the matrix A .If    kk BRAR  , B is iteratively faster, for k iterations than A . 

The error estimate for the iterations Uwamusi (2016) and Varga (2000) is obtained as follows. Let 
    xx kk   be the error vector for the vector iterates. Then the quantity in equation (2.3.6) for the 

k  iterations is given by

 

 

kk

1

0 

















  and it is then the average reduction factor per iteration, for k

iterations for successive error. Moreover, it is true that    kARkk eA 
1

  , where, e  is the base of 

the natural logarithm. Thus by further setting as    1
 k

k ARN and letting
e

kN 1
 , we have 

succeeded in obtaining kN  as a measure of the number of iterations required to reduce the norm of 

the initial error by a factor e . 

2. THE BACKWARD ERROR BOUNDS 

The frequently occurring perturbed linear system with backward error is in the form: 

  bbxAA (                                 (3.1.1) 
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The normwise backward error of x  Bjorck (2009), Rump (1999),Uwamusi (2010 a , 2016), Walden 

and Kartson (1995) is  

  bbAAbbxAAx   ,,min)(             (3.1.2) 

The normwise backward error will be small if the residual Axb   is reasonably small enough. 

Theorem 3.1, Bjorck (2009), Walden and Kartson(1995). The norm-wise backward error is given by  

 
bxA

r
x


 for Axbr                                  (3.1.3) 

where, A is defined by the equation 

2

2
















x

xr

A

T

 (3.1.4) 

The


x satisfies the linear system   bxAA 


and has the smallest energy norm ( 2l -norm) defined 

as 

2

2

2 


x

r
A

                                                                                                                           

(3.1.5) 

for any such A . Equation (3.1.4) is the optimal value anyone hopes to get from the perturbed 

system bxA 


.If we decide to use either LU  Factorization or pure Guassian elimination methods 

for the above analysis, then such Gaussian algorithm is given in the form:  

Guassian elimination Algorithm: 

Given the matrix 
nnn RbRA   , . 

for 1:1  nk  

for nki :1  

kk

ik
ik

a

a
l  ; 

for nkj :1  

kjikijij alaa  ; 

End 
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kikii blbb  ; 

end 

end 

Now turning our attention to the following LU  Factorization 

 










 dxUUbdLL ,                                                                         (3.1.6) 

wherein,  

UULL nn  


,  , one immediately forms the product  

bxUULL 




















                                                                                              (3.1.7) 

The backward error A ,  see e.g., Golub and Van-Loan (1983) is bounded by the error estimate: 

  ULA nn   3                                            (3.1.8) 

The elements in 


U satisfy 


 Au nij   with partial pivoting 1ijl and polynomially bounded by 

the factor 

  nnnUL 1
2

1






                                 (3.1.9) 

By further neglecting terms of order   2
nO  in equation (5.8), the best possible bound for 


A  is 

given by the inequality 

 


 AnnA nn15.1      (3.1.10) 

Following equation (3.1.10), it holds that 






 xAnnbAx nn)1(5.1 .                    (3.1.11) 

This means that the residual is bounded by the quantity 






 xAnnr nn)1(5.1                        (3.1.12) 
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We conclude this section by saying that the Gaussian elimination gives small relative residual error 

for ill-conditioned system so long the growth factor is large whose quantity is






















xA

xAb

and in 

general is of order ns , where s  is the machine precision number. 

2.3 Computation of Imaging and distortion: Ray tracing implicit surface. 

In this section, we discuss the image quality assessment measures Brunet et al (2017). In this sense, 

we define the universal image quality index whose original image signal is  nixx i ,...,2,1  and, 

its distorted version is  niyy i ,...,2,1  by the equation 














































yx

xy

yx

yx

yx

yx
yxQ












2222

22
),(                                 (3.2.1) 

In equation (3.2.1), the term r denotes the mean image signal whilst  
r  is the variance with xy  

being the covariance between the original and distorted version of the image signal. 

In particular, the first term in equation (3.2.1) is that it measures the luminance similarity between the 

images, the second term measures contrast similarity and the third term measures correlation or 

structural similarity between the images. 

If we are able to collect such N  different vector images, the overall image quality is the average sum 

vector 



N

j

jQ
N

Q
1

1
, where the jth  term denotes the image patch and, N is the number of patches. 

By addition of constants 321 ,, ccc called the stabilizing constants to the terms above, and because the 

structural similarity index (SSIN) depends on the weighted means, variance, covariance and 

stabilizing constant, we therefore, give the SSIN by the equation: 
























































3

3

2

22

2

1

22

1 22

c

c

c

c

c

c
SSIN

yx

xy

yx

yx

yx

yx












                 (3.2.2) 

Given two point vectors we compute the normalized metric distance by the equation 

2

1

2

2

2

2

2

2),(



















cyx

yx
yxd ( for some positive constant c)             (3.2.3) 

Thus the Standard statistical estimate for illuminating set is computed in the form 
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),(),(
22

),( 21

2

22

2

1

22

1
yxSyxS

c

c

c

c
yxSSIN

yx

yx

yx

yx














































           (3.2.4) 

To decompose an image patch into structural and nonstructural parts, we use the formula 

)( exex xx        (for )1,...,1,1e in the direction of mean and, ex x  being the zero mean. 

.3.3   BASIC INTERVAL SOLVERS/ NUMERICAL RESULTS 

The aim of interval methods is to deliver good quality results in a computing time not too distance 

from a pure numerical algorithm and also give proof of existence (and possibly uniqueness) of a 

solution Petkovic and Trikovic (1995), Rump (1999), Uwamusi (1999, 2009, 2010 a ,2010 b  ,2011). 

Basic interval arithmetic operations are the /,,, x . 

We give the following notations: 

A set of real numbers is denoted by
nR . A real point interval  2121 :],[ aaRaaaa   is a 

segment of the real line. 

IR , the set of real point intervals may be represented by its end points or by the midpoint and radius. 

We say that a linear system is a parameterized system if 

    bxA  ,                                                     (3.3.1) 

where, 
nnRA )(  and   nRb   respectively depend  affine linearly on a parameter vector 

nR  

for which the parametric solution set is defined in the form: 

          bxARxbA n  .)(,,       (3.3.2) 

for some ][  . Various basic interval operations are to be found in Uwamusi (2010 a , 2010 b , 

2011). 

Thus from equation (7.1), and in the midpoint radius form, we have that 

 AAAAA cc  ,  

   cc bbb ,  

so that  








































bbbxxxAAA ccc

2

1
,

2

1
,

2

1
. 

The following interval operators are well known: 
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Modified Interval Gauss-Siedel method Uwamusi (2004, a2010 , 2011): 

),...,2,1,...,1,0(,
1 1

1 1
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1
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         (3.3.3) 

Modifield Krawczyk’s method [19]: 
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Where, 

   
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),...,3,2,1,...,1,0,...,1,0( tqtvk  for t  a positive integer. 

We present the following Example1 with corresponding solutions of their operators. 

Example 1. 
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The following results were obtained earlier as represented in Tables 1 and 2. 

Table 1: Showing results computed by Modified Krawczyk’smethod of Equation (3.3.4) 
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Iteration k  Results ][ kx  

1 [0.498901717, 0.498901710] 

[-0.199872459, -0.199873833] 

[-0.530073299, -0.530083371] 

 

2 [0.498144782, 0.498144782] 

[-0.199605179, -0.199605179] 

[-0.528826126, -0.528826126] 

 
 

Table2: Showing Results computed by Modified Interval Gauss-Siedel method (3.3.3) 

Iteration k  Modified Interval Gauss-Siedel 

Method (7.3) , kx  
)(( )(kxmF  

1 [0.499714714, 0.500295002] 

[[-0.1992852586, -

0.191648811] 

[-0.527055653, -0.52654115] 

 

0.010277487 

0.068207109 

0.123361608 

2 [0.498146418, 0.498147691] 

[-0.199594945, -0.199594528] 

[-0.529037166, -0.529036769] 

 

 

0.000021842 

0.000000148 

0.000031327 

3 [0.498143417, 0.498143420] 

[-0.1995945558, -0.199594558] 

[-0.529036401, -0.529036401] 

0.000000011 

0.000000002 

0.000000065 

 

Table 3: Showing Results computed by interval LU Factorization. 

Iteration k  Results, ][ kx  ))(( )(kxmF  

1 [0.499712049, 0.500298881] 

[-0.199983564, -0.196435131] 

[-0.529487889, -0.529058968] 

0.011028171 

0.013388645 

0.015284972 

2 [0.49815262,  0.498153567] 

[-0.199740354, -0.19973938] 

[-0.529063563, -0.529061228] 

0.00000075344 

0.001314920 

0.001313437 

3 [0.49814342, 0.498814342] 

[-0.199594562, 0.199594552] 

[-0.529036524, -0.52903634] 

0.000000002 

0.000000003 

0.000001925 

 

 

We compute the average incident ray vectors for the sequence of iterates as 
3

321 MXMXMX 
 for 

each operator as displayed below where, ][
2

1
ii XMX  . 
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Table 4 

Method 3.3.3 ( Average iterated 

Gauss-Siedel method) 

Method 3.3.4 ( Average 

iterated Modified Krawczyk’s 

method) 

  Average iterated  LU 

Decomposition Method  





















52829059.0

33331982187764.0

333334987651103.0

 





















5294522305.0

197962468.0

54985232477.0

 





















33335291156093.0

66661991571151.0

4988791465.0

 

 

The imaging and distortion can now be discussed. We compute the normalized distance  
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yx
yxd for 5.0c  to be 454877606440281.0  using  for example, the 

Modified Interval Gauss-Siedel method for  



n

k

kxmF
n

y
1

)(
1

.We hope to dwell further on this in 

subsequent papers. 

 

4.  DISCUSSION 

The basic circular interval arithmetic initiated in Rump (1999) as modified in Uwamusi ( 2010 a ,2010

b ) were motivated in the implementation of interval Gauss-Siedel method as well as interval LU 

Factorization for the given problem. Also discussed in the implementation was the interval 

Kracwzyky’s method as modified in Uwamusi (2009) which uses Moore’s interval arithmetic see e.g.,  

Uwamusi (1999)whose speed of convergence was twice as fast as the original Krawczyk’s method 

adopted. In the sense of continuity and effective covering properties of these methods, it is assumed 

that multivalued maps arising from the modifications of these interval operators are both lower and  

weakly upper semi-continuous with U chains reachable domains where 
nRDU  . We also 

give the backward error analysis for the data problem for the linear system and showed that the 

Gaussian elimination method respectively, LU Factorization cannot calculate effectively the inverse 

of a matrix under certain conditions. It is known Uwamusi (2009) that interval LU Factorization is 

feasible only when interval Gaussian elimination method exists. In so doing we therefore gave error 

bounds for both Gaussian elimination method and LU Factorization in the sense of Golub and Van-

Loan (1983).Using Brunet et al (2017), standard statistical estimate for illuminating set is described 

with a normalized distance for the imaging and distortion of a ray tracing implicit surface for the 

solution set of nonlinear system of equation computed. We hope to dwell more on this in subsequent 

works. All results computed for the solution set in the interval forms are displayed in Tables 1-4 with 

guaranteed self-validating error bounds. In particular, Table 4 gives the average of sequences of 

iterations for the operators which were used to compute the normalized distance for the imaging and 

distortion arising from a ray tracing implicit surface.  
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5. CONCLUSION 

The paper presented functional iterative methods for both univariate and multivariate functions in 

topological space. In particular, we paid special attentions to the solution to interval nonlinear system 

of equations. We explained in details conditions under which a solution to the given problem is 

contractible to a desired solution. For example, using Banach fixed point theory, our discussion on a 

Baire space showed in the sense ofBourles (2011), that a completely regular topological space is K -

Suslin if, and only if, it is K -analytic. In addition it is pointed out that a Polish space, the Suslin 

space, K-Suslin space , the Quasi—Suslin space are webbed which also coincides with 

Iyahen(1998).This formed the basis of completely regular uniformable computable topological  for 

the chainable maps with effective covering property.  In this sense, the three main iterative methods of 

Jacobi, Gauss-Siedel and Successive Over-relaxation techniques were presented and analyzed. The 

average rates of convergence of these methods were compared. It was also discussed under what 

conditions will Gaussian elimination and LU decomposition methods fail to compute exactly, the 

inverse of a regular matrix. 

We took numerical example from the earlier works of Uwamusi (2004,2009, 2010 a , 2010 b , 2011) to 

describe interval implementation of these algorithms bearing in mind that distributive law does not 

hold in general for interval arithmetic operations. In particular, the modified Fast Krawczyk’ 

algorithm due to Uwamusi (2009) formed the basis of comparison of results obtained with circular 

interval arithmetic operations with guaranteed error bounds. This is one main advantage enjoyed by 

interval arithmetic operations since they are self-validating numeric. We again observed that the 

interval counterpart of Successive over-relaxation technique is not profitable in the interval libraries 

Uwamusi (2009, 2011) due to dependency problems of interval arithmetic operations. But we have to 

bear in mind that in real floating point calculations where interval arithmetic operations are 

completely absent, the SOR method has higher computational advantage over Gauss-Siedel method 

due to its high speed of convergence to the desired solutions. 

 We extended our views of application areas to imaging and distortion as they pertain to a ray tracing 

implicit surfaces with results computed from these aforementioned fast interval solvers. It is 

computed for the normalized distance between imaging and distortion of a ray tracing implicit 

surface. We hope to dwell more of such research in our future endeavors. 
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