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WEIBULL-EXTENDED PRANAV DISTRIBUTION:  

APPLICATION TO LIFETIME DATA SETS 
 

NOFIU I. BADMUS, SAIDI O. AMUSA AND YEMISI O. AJIBOYE 

 
In this article, Weibull link function initiated by Jones (2004) and extended 

Pranav distribution written by Uwaeme et al. (2018) are convolute to introduced 

Weibull-extended Pranav distribution using the idea of Tahir et al. (2016). The 

motivation is to develop a robust and flexible distribution that will have better 

fit to any skewed data set. Different properties of the proposed distribution are 

obtained. Estimation of model parameters with the method of maximum 

likelihood estimates are presented. Then, the new distribution is compared 

with some existing distributions by illustrating two different life time data sets. 

Hence, the results through estimation and goodness of fit criteria reveal that 

Weibull-extended Pranav distribution has better fit to the data sets than other 

distributions considered in the study.  

 
 

1. INTRODUCTION 
 

The Weibull distribution is a well-known, widely used and flexible distribution. While, Pranav 

distribution is a mixture of two different univariate continuous distributions known as exponential 

with a scale parameter and gamma with a shape parameter 4 and scale parameter  Shukla (2018). 

Therefore, in literature, different methods of convolution (link functions) have been developed and 

used by several authors and researchers. Some of the methods of convolute are discussed briefly as 

follows: generator approach initiated by (Eugene et al., 2002) and used by Lemonte, (2014) in his 

work.  Beta link function was introduced by Jones (2004) also used by many authors in their studies, 

such as: Barreto-Souza and Cordeiro (2010), Badmus and Bamiduro (2014), (Badmus et al., 2015 

and 2017) and many more.  

However, exponentiated method was used by Bakoush (2012) where he introduced an extended 

Lindley distribution, the exponentiated inverted Weibull distribution by (Flaih et al., 2012) and 

exponentiated power Lindley distribution by Ashour and Eltehiwy (2015). While, exponentiated T-

X family of distribution introduced by (Alzaghal et al., 2013), which was used by (Alzaatreh et al., 

2013), (Carl et al., 2013) and Handy and Mahmoud (2014) in their works. While, Weibull link 

function was studied and written by Tahir et al. (2016) which (leren et al., 2018) followed their 

ideas in their paper.  

The main aim of this work is to develop a new continuous distribution called the Weibull-extended 

Pranav distribution using Weibull link function in conjunction with extended Pranav distribution 

which was introduced by (Uwaeme et al., 2018). Therefore, the work is arranged and presented in 

sections as follows:  

_________________ 
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2. MATERIALS AND METHODS 

 2.1   The Weibull-Extended Pranav Distribution 

Recently, Uwaeme et al. (2018) discussed an extended Pranav distribution with two parameters 

and was used for modelling real life data set. The distribution and density functions are given 

respectively: 

 

𝑄(𝑦) = [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

, 𝑦 > 0,  𝛼, 𝛽 > 0.             (2.1.1) 

       and 

𝑞(𝑦) = 𝛽
𝛼4

𝛼4 + 6
(𝛼 + 𝑦3)𝑒−𝛼𝑦 [1 − [1 +

𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽−1

;  𝑦 > 0, 𝛼, 𝛽 > 0   (2.1.2) 

     where, 𝛼 is the scale parameter. 

     Tahir et al. (2016) proposed a Weibull link function for obtaining pdf and cdf of any Weibull  

     based distribution and was used by leren et al. (2018). The pdf and cdf is defined as: 

 

                   𝑓(𝑦) =
𝜆𝜃𝑔(𝑦)

𝐺(𝑦)
[−𝑙𝑜𝑔[𝐺(𝑦)]]

𝜃−1
𝑒−𝜆[−𝑙𝑜𝑔[𝐺(𝑦)]]

𝜃

                                      (2.1.3) 

      and 

                     𝐹(𝑦) = ∫ 𝜆𝜃𝑦𝜃−1𝑒−𝜆𝑦𝜃−𝑙𝑜𝑔𝐺(𝑦)

0
= 𝑒−𝜆[−𝑙𝑜𝑔[𝐺(𝑦)]]

𝜃

                               (2.1.4) 

     where,  and 𝐺(𝑦) are shape parameters, pdf and cdf of any Weibull based distribution. 

     Fortunately, we obtain the pdf and cdf of the Weibull-Extended Pranav distribution by simplify- 

     ing and substituting equations (2.1.1 and 2.1.2) into (2.1.3 and 2.1.4) respectively: 
  

𝑓𝑊𝐸𝑃   (𝑦) =
𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽
 

[−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1

 

                                 𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

 𝑦;  𝜆, 𝜃, 𝛽  𝑎𝑛𝑑 𝛼 > 0    (2.1.5) 

and  

                                        𝐹𝑊𝐸𝑃   (𝑦) = 𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

                      (2.1.6) 
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 where,  and  the first-two parameter are the two additional shape parameters, the existing 

shape parameter and scale parameter of the Weibull-extended Pranav distribution. The usefulness 

of the shape parameter is to control the tails weights and the possible plots of the pdf and cdf of the 

Weibull-Pranav distribution for various values of parameters from (2.1.5) and (2.1.6) as shown in 

figure 1 below: 

 

FIGURE 1. The shape and plots of the PDF in (a) and CDF in 

(b) of the WEP distribution with various parameter values 

 

Some reliability functions such as the survival, hazard rate and reverse hazard rate functions 

corresponding to WEP distribution were presented as follows: 

 

2.2   The Survival Function 

The survival function is known as reliability function is a function that gives the likelihood 

and probability that an individual, a system or object of interest will survive after some time. 

The mathematical expression is given by  

𝑆𝑈𝑅𝑊𝐸𝑃(𝑦) = 𝑃(𝑌 < 𝑦) = 1 − 𝐹(𝑦)                               (2.2.1) 

where  𝐹(𝑦) is the cdf of the Weibull-Extended Pranav distribution in (2.16). Then, 

substituting (2.16) in (2.21) and simplifying (2.21) yields (2.22) which is the survival function 

of WEP distribution. 

      𝑆𝑈𝑅𝑊𝐸𝑃(𝑦) = 1 − 𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

               
    (2.2.2) 

2.3    The Hazard Rate Function 

The hazard function is also called risk function or failure rate function that gives the probability 

that an object or device will die or fail within an interval of time. It is used to model data 

distribution in survival analysis. Therefore, its mathematical expression is given by      

                            (2..3.1) 

where            
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We obtain the WEP distribution hazard rate function by putting 𝑓(𝑦) and 𝐹(𝑦) as the pdf and 

cdf of the WEP which gives 

                (2.3.2) 

        

2.4   The Reversed Hazard Function 

The reversed hazard function is the probability that defined the ration between the probability 

density to its distribution function. It’s expressed mathematically below as: 

                   (2.4.1)     

Hence, the reversed hazard function of the WEP is also obtain by taking 𝑓(𝑦) and 𝐹(𝑦) as the 

pdf and cdf of the WEP and its define by 

                                        (2.4.2) 

Then, the plots of the survival and hazard function of the Weibull Extended Pranav distribution 

are shown with different parameter values. In figure 2 below, plot (a) revealed that the WEP 

distribution can be used to model random variable whose survival rate decreases as they grow 

old due to the probability of survival for any random variable following a WEP distribution 

decreases as the values of the random variable increases, therefore, probability of life decreases 

as life moves on. While, plot (b) depict the characteristic of the hazard function of the WEP 

distribution. This equally means that the probability of risk for any WEP random variable 

increases as year or time of the variable continues. 

 

FIGURE 2. The plots of Survival and Hazard functions 

of the WEP distribution with different parameter values 

 

2.5    Moments 

We derive and obtain the s-th moment of the WEP distribution as the s-th moment of a random 

variable Y is given by 
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𝐸(𝑌𝑠) = ∫ 𝑦𝑠𝑦

0
𝑓𝑊𝐸𝑃(𝑦)𝑑𝑦                                        (2.5.1) 

     

= ∫ 𝑦𝑠
∞

0

𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +
𝛼
3
𝑦
3
+3𝛼

2
𝑦
2
+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1

 

                                        𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

𝑑𝑦

               (2.5.2) 

 

= ∫
𝜆𝜃𝛼5𝑦𝑠𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1∞

0

 

 

𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

𝑑𝑦 +

 

= ∫
𝜆𝜃𝛼4𝑦𝑠+3𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1∞

0

 

 

                                      𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

𝑑𝑦 

                            (2.5.3) 
The purpose of the equations is to obtain the s-th order moment about the origin of the new 

distribution. Other equations are presented in appendix below  

Hence, the s-th order moment about the origin, 𝐸(𝑌𝑠) of the WEP distribution is given by  

 

             𝐸(𝑌𝑠) =
𝐴𝑖,𝑗,𝑞,𝑘

(𝑠+3𝑗−𝑞−𝑘)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+1+𝐵𝑖,𝑗,𝑞,𝑘
(𝑠+3𝑗−𝑞−𝑘+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+4

(𝛼4+6)𝑗+𝑞+𝑘+1𝐶𝑖,𝑗,𝑞,𝑘
(𝑠+3𝑗−𝑞−𝑘+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+3

. 𝐷𝑖,𝑗,𝑞,𝑘
(𝑠+3𝑗−𝑞−𝑘+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+3 𝐸𝑖,𝑗,𝑞,𝑘
(𝑠+3𝑗−𝑞−𝑘)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+1 (2.5.4) 

where, 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 are stated in equations (i, ii, iii, iv and v) in the appendix.  

2.6 Moment Generating Function 

Here, we propose the moment generating function (mgf) as a useful tool for computing any 

distribution’s moment. Wherefore, the mgf of WEP distribution is obtain as follows: 

 

𝑀𝑊𝐸𝑃(𝑦)(𝑡) = 𝐸(𝑒𝑡𝑦) = ∫ 𝑒𝑡𝑦𝑓
𝑊𝐸𝑃

  (𝑦)𝑑𝑦
∞

0
                 (2.6.1) 

 

∫ 𝑒𝑡𝑦
∞

0

𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1

 

                                      𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

𝑑𝑦

                       

= ∫
𝜆𝜃𝛼5𝑦𝑠𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1∞

0
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𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

𝑑𝑦 +

 

∫
𝜆𝜃𝛼4𝑦𝑠+3𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1∞

0

 

 

𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

𝑑𝑦 

                             
From the expressions above in the s-th moment, the mgf of the WEP distribution is therefore 

given by 

 

𝑀𝑊𝐸𝑃(𝑦)(𝑡) = ∑ (
𝑡

𝛼
)

𝑧
{
𝐴𝑖,𝑗,𝑞,𝑧

(𝑠+3𝑗−𝑞−𝑧)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑧+1+𝐵𝑖,𝑗,𝑞,𝑧
(𝑠+3𝑗−𝑞−𝑧+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑧+4

(𝛼4+6)𝑗+𝑞+𝑧+1𝐶𝑖,𝑗,𝑞,𝑧
(𝑠+3𝑗−𝑞−𝑧+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑧+3

.∞
𝑧=0   

 

𝐷𝑖,𝑗,𝑞,𝑧

(𝑠+3𝑗−𝑞−𝑧+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑧+3
. 𝐸𝑖,𝑗,𝑞,𝑧

(𝑠+3𝑗−𝑞−𝑧)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑧+1
}                (2.6.2) 

 

2.7 Order Statistics 

Order statistics can be defined as a tool widely used in statistical theory for solving complex 
problems namely: detection of outliers, goodness of fit tests, entropy estimation and so on Tahir 
et al. (2016) and leren et al. (2018).  Let be a random sample from a distribution with 
density function 𝑓𝑊𝐸𝑃(𝑦) and  denote the associating order statistics from the 
random sample. Then, the density function 𝑓𝑘:𝑛(𝑦) of the kth order statistic is expressed as 
 

𝑓𝑘:𝑛(𝑦) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
∑ (−1)𝑖 (

𝑛 − 𝑘
𝑖

)𝑛−𝑘
𝑖=0 𝑓𝑊𝐸𝑃(𝑦)𝐹𝑊𝐸𝑃(𝑦) 𝑖+𝑘−1  (2.7.1) 

 
where, 𝑓𝑊𝐸𝑃(𝑦) and 𝐹𝑊𝐸𝑃(𝑦) are both the density and distribution functions of Weibull-
Extended Pranav distribution. By substituting equations (2.1.5) and (2.1.6) into (2.7.1) yields 
the density function of the kth order statistics 𝑌𝑘:𝑛 as given below 
 

𝑓𝑘:𝑛(𝑦) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
∑(−1)𝑖 (

𝑛 − 𝑘
𝑖

)

𝑛−𝑘

𝑖=0

[
𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 ] 

                                      𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

                                    (2.7.2) 

 

Therefore, the density function of both the minimum and maximum (𝑌(1)) and (𝑌(𝑛)) order 

statistic of the WEP distribution are expressed by  
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𝑓1:𝑛(𝑦) = 𝑛 ∑(−1)𝑖 (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

[
𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽 ] 

                                      [𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

]

𝑖

                                    (2.7.3) 

also 

𝑓𝑛:𝑛(𝑦) = 𝑛 [
𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽
] 

 

[𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

]

𝑛−1

            (2.7.4) 

2.8     Estimation 

Maximum likelihood estimation MLE is mostly and widely used in estimating model 
parameters of any develop model in literature. Let  be a random sample of size n from 
the Weibull-Extended Pranav distribution with unknown parameters  and  defined in 
(2.1.6) above. Then, the log-likelihood function can be expressed as 
 

𝑓𝑊𝐸𝑃   (𝑦) =
𝜆𝜃𝛼4(𝛼 + 𝑦3)𝑒−𝛼𝑦 {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

(𝛼4 + 6) {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽
 

[−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽

]

𝜃−1

 

                                      𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

 
 

Then, the likelihood function (LF) is obtain as follows: 

𝐿𝐿(𝑌|𝜆, 𝜃, 𝛽, 𝛼) =

(𝜆𝜃𝛽𝛼4)𝑛 ∏ {(𝛼+𝑦
𝑖
3)𝑒−𝛼𝑦𝑖}∏ {1−[1+

𝛼3𝑦𝑖
3+3𝛼2𝑦𝑖

2+6𝛼𝑦𝑖

𝛼4+6
]𝑒−𝛼𝑦𝑖}

𝛽−1

∏ [−𝑙𝑜𝑔[1−[1+
𝛼3𝑦𝑖

3+3𝛼2𝑦𝑖
2+6𝛼𝑦𝑖

𝛼4+6
]𝑒−𝛼𝑦𝑖]

𝛽

]

𝜃−1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

(𝛼4+6)𝑛 ∏ {1−[1+
𝛼3𝑦𝑖

3+3𝛼2𝑦𝑖
2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦𝑖}

𝛽

𝑒𝜆 ∑ [−𝑙𝑜𝑔[1−[1+
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦𝑖

𝛼4+6
]𝑒−𝛼𝑦𝑖]

𝛽

]

𝜃

𝑛
𝑖=1

𝑛
𝑖=1

 (2.8.1) 

             𝐿𝐿 = 𝑛𝑙𝑜𝑔𝜆 + 𝑛𝑙𝑜𝑔𝜃 + 𝑛𝑙𝑜𝑔𝛽 + 4𝑛𝑙𝑜𝑔𝛼 − 𝑛𝑙𝑜𝑔(𝛼4 + 6) + ∑ 𝑙𝑜𝑔(𝛼 + 𝑦
𝑖
3) − 𝛼 ∑ 𝑦

𝑖
𝑛
𝑖=1

𝑛
𝑖=1 + 

                   (𝛽 − 1)∑ {1 − [1 +
𝛼3𝑦𝑖

3+3𝛼2𝑦𝑖
2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖}𝑛

𝑖=1 + (𝜃 − 1)∑ [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦𝑖

3+3𝛼2𝑦𝑖
2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

]𝑛
𝑖=1  

 

           −𝜆 ∑ [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

]
𝜃

𝑛
𝑖=1                     (2.8.2) 
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Taking the partial derivatives with respect to parameters  and , yields the following 

  
𝜕𝐿𝐿

𝜕𝜆
=

𝑛

𝜆
− ∑ [−𝑙𝑜𝑔 [1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

]

𝜃

𝑛
𝑖=1                        (2.8.3) 

 

                  
𝜕𝐿𝐿

𝜕𝜃
=

𝑛

𝜃
+ ∑ [−𝑙𝑜𝑔 [1 − [1 +

𝛼3𝑦𝑖
3+3𝛼2𝑦𝑖

2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

]𝑛
𝑖=1 − 𝜆 ∑ [−𝑙𝑜𝑔 [1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

]

𝜃

𝑛
𝑖=1  

           [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦𝑖

3+3𝛼2𝑦𝑖
2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

]                      (2.8.4) 

 
𝜕𝐿𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑{1 − [1 +

𝛼3𝑦
𝑖

3 + 3𝛼2𝑦
𝑖

2 + 6𝛼𝑦
𝑖

𝛼4 + 6
] 𝑒−𝛼𝑦𝑖}

𝑛

𝑖=1

+ (𝜃 − 1)∑[−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦𝑖

3 + 3𝛼2𝑦𝑖
2 + 6𝛼𝑦𝑖

𝛼4 + 6
] 𝑒−𝛼𝑦𝑖]

𝛽

]

𝑛

𝑖=1

 

           −𝜆 ∑ [−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦𝑖

𝛼4+6
] 𝑒−𝛼𝑦𝑖]

𝛽

] {1 − [1 +
𝛼

3
𝑦
𝑖
3
+3𝛼

2
𝑦
𝑖
2
+6𝛼𝑦

𝑖

𝛼4+6
] 𝑒

−𝛼𝑦
𝑖}

𝜃

𝑛
𝑖=1         (2.8.5) 

 

𝜕𝐿𝐿

𝜕𝛼
=

4𝑛

𝛼
−

𝑛

𝛼4 + 6
− ∑𝑦𝑖

𝑛

𝑖=1

+ (𝛽 − 1)∑

[
 
 
 
 𝑦𝑖𝑒−𝛼𝑦𝑖 {

1

(𝛼4+6)
2 −

𝛼𝑦𝑖+𝛼4+6

𝛼4+6
}

∏ {1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦} {1 − [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦}𝑛

𝑖=1
]
 
 
 
 𝑛

𝑖=1

 

−∑[
𝑦𝑖𝑒−𝛼𝑦𝑖 {

1

(𝛼4+6)2
−

𝛼𝑦𝑖+𝛼4+6

𝛼4+6
}

{1 − [1 +
𝛼
3
𝑦
𝑖

3
+3𝛼

2
𝑦
𝑖

2
+6𝛼𝑦

𝛼
4
+6

] 𝑒
−𝛼𝑦

𝑖}
𝛽 ]

𝑛

𝑖=1

+ (𝜃 − 1)∑[
𝑦𝑖𝑒−𝛼𝑦𝑖 {

1

(𝛼4+6)2
−

𝛼𝑦𝑖+𝛼4+6

𝛼4+6
}

∏ {1 − [1 +
𝛼
3
𝑦
𝑖

3
+3𝛼

2
𝑦
𝑖

2
+6𝛼𝑦

𝛼
4
+6

] 𝑒
−𝛼𝑦

𝑖}
𝛽

{1 − [1 +
𝛼
3
𝑦
𝑖

3
+3𝛼

2
𝑦
𝑖

2
+6𝛼𝑦

𝛼
4
+6

] 𝑒
−𝛼𝑦

𝑖}
𝛽

𝑛
𝑖=1

]

𝑛

𝑖=1

 

 

− ∑

[
 
 
 
 
 
 

𝑦𝑖𝑒−𝛼𝑦𝑖 {
1

(𝛼4+6)2
−

𝛼𝑦𝑖+𝛼4+6

𝛼4+6
}

[[1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦𝑖

𝛼4+6
]𝑒−𝛼𝑦𝑖]

𝛽

]

𝜃

]
 
 
 
 
 
 

𝑛

𝑖=1

 

 +𝜆𝜃𝛽 ∑ {
𝑦
𝑖𝑒−𝛼𝑦𝑖{

1

(𝛼4+6)
2−

𝛼𝑦𝑖+𝛼4+6

𝛼4+6
}{1−[1+

𝛼
3
𝑦
𝑖
3
+3𝛼

2
𝑦
𝑖
2
+6𝛼𝑦

𝑖

𝛼
4
+6

]𝑒
−𝛼𝑦

𝑖}
𝛽−1

[−𝑙𝑜𝑔[1−[1+
𝛼
3𝑦𝑖

3
+3𝛼

2𝑦𝑖
2
+6𝛼𝑦𝑖

𝛼4+6
]𝑒−𝛼𝑦𝑖]

𝛽

]

𝜃−1

{1−[1+
𝛼
3
𝑦
𝑖
3
+3𝛼

2
𝑦
𝑖
2
+6𝛼𝑦

𝑖

𝛼
4
+6

]𝑒
−𝛼𝑦

𝑖}[1−[1+
𝛼3𝑦𝑖

3+3𝛼2𝑦𝑖
2+6𝛼𝑦𝑖

𝛼4+6
]𝑒−𝛼𝑦𝑖]

𝛽 }𝑛
𝑖=1              (2.8.6) 

 
Equations (2.8.3 to 2.8.6) can be solved by using Newton Raphson method to obtain the 

 the MLE of ( ), respectively. Hence, since the equations cannot be solved 
manually but numerically by implore statistical software like R, SAS and so on once the data 
sets are readily available. Then, we use the Newton Raphson method from maxLik package in 
R software. 
 

2.9 Applications to Real-Life Data Sets 

 

In this section, we show numerically the robustness and flexibility of the propose WEP 

distribution to various existing distributions in literature using two different real-life data sets. 

We also achieve this through the goodness-of-fit of the propose distribution comparing with 

distributions haven common characteristics like: Extended Pranav (EP) distribution by 

Uwaeme, et al. (2018), Pranav distribution by Shukla (2018), Weibull-Lindley (WLn) 

distribution by leren et al. (2018), Two-parameter Pranav (TPP) distribution by Umeh and 

Ibenegba (2019), The Akash distribution (AD) by Shanker (2015), A Discrete Pranav (DP) 

distribution by Abebe and Shukla (2019) and a new distribution called Weibull-Pranav 

distribution. 
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We based the comparison on some selected criteria of a distribution like parameter estimate, 

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Haman-

Quinn Information Criterion (HQIC) and Bayesian Information Criterion (BIC). 

 

Dataset One 

The data set one contains the strength of data of glass of the aircraft window as reported 

by Fuller et al. (1994) and used by Uwaeme et al. (2018). The summary of the data is 

shown in Table 1 below: 

 
Dataset Two 

Data set two represents the tensile strength, measured in GPa, of 69 carbon fibers tested 

under tension at gauge lengths of 20mm as reported by Bader and Priest (1982) and 

used by Shukla (2019). The summary of the data is shown in Table 2 below: 

 

The maximum likelihood estimates, -2 LogL, AIC, CAIC, HQIC and BIC statistics of the fitted 

distributions are shown in Table 3 for data set one and two respectively. Likewise, we provide 

the histogram and the estimated pdf of the WEPD, EPD, TPPD, WLnD, WPD, PD, AD and 

DPD for the two data sets in figure 3 below.  

 

3. RESULT 

Here, we are able to showcase the efficiency and robustness of the new distribution 

over other distribution considered in the study by using two different real data sets. Results 

from the analysis are stated as follows: Table 1 and 2 showed the descriptive statistics summary 

of each data set, while Table 3 reflects the maximum likelihood estimated values and the model 

selection criteria i. e LogL, AIC, CAIC, HQIC and BIC. From all indications, the propose 

distribution has smaller values which made it to be more efficient and robust than others. Also, 

it is very easy to note from figure 3 (estimated pdfs for both datasets) below that the WEP 

distribution (in red colour line) has good and better representation of the two data sets than any 

other distributions considered in the study. 

 

 

4. DISCUSSION 

A new distribution called Weibull-Extended Pranav (WEP) distribution has been 

introduced using Weibull link model by Tahir et al. (2016) which has its baseline distributions 

from Extended Pranav and Pranav distributions by Uwaeme et al. (2018) and Shukla (2018). 

Some of its statistical properties which include its reliability, hazard rate and reversed hazard 

function, moments, moment generating function, order statistics were derived and discussed. 

The method of maximum likelihood estimation for estimating the distribution parameter is 

presented as well. Two examples of real-life data sets were presented to illustrate the 

applications model selection criteria of the Weibull-Extended Pranav, Extended Pranav, 

Two-Parameter Pranav, Weibull-Lindley, Weibull Pranav, Pranav, Akash and Discrete 

Pranav distributions.  
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Table 1: Descriptive (summary) Statistics for strength of data of 

glass of the aircraft window 
Min Median Mean Max Variance Skewness Kurtosis 

18.83 29.90 30.81 45.38 52.61154 0.4053965 2.286637 

 

 

 

 
Table 2: Descriptive (summary) Statistics for the tensile strength, 

measured in GPa, of 69 carbon fibers 

Min Median Mean Max Variance Skewness Kurtosis 

1.312 2.478 2.451 3.585 0.2451677 -0.028216 2.940733 

 

 

 

 

5. CONCLUSION 
 

Conclusively, result from the analysis in Table 3 indicates that the Weibull-Extended 

Pranav has the lowest values of LogL, AIC, CAIC, HQIC and BIC and this implies that the 

smaller the LogL, AIC, CAIC, HQIC and BIC values, the better the distribution. Therefore, 

Weibull-Extended Pranav can be used in modelling such skewed lifetime data sets. 

 

 

 
FIGURE 3. The plots of Histogram and Estimated Densities of the WEPD, EPD, TPPD, 

WLnD, WPD, PD, AD and DPD for the two data sets. Among the distributions presented in 

the graphs above the propose distribution has better representation and captured the two data 

sets well than other distributions 
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Table 3 MLE’s, -2ln L, AIC, CAIC, HQIC and BIC Statistics of the fitted 

distributions of data-sets 1 and 2. 

Dat

a  

Distr Estimate -2ln L AIC CAIC HQIC BIC 

 

 

 

 

 

 

Set 

1 

 

 

 

WEP 

 

 

 

 

 

 

 

303.1 

 

 

 

614.29 

 

 

 

615.83 

 

 

 

616.16 

 

 

 

620.03 

EPD 

 
 

 

445.4 896.84 

 

897.73 

 

898.25 

 

901.15 

 

TPP 

 

 

460.1 

 

924.21 

 

924.64 

 

925.14 

 

927.07 

 

 

WLn 

D 

 

 

 

 

460.1 

 

 

926.21 

 

 

927.10 

 

 

927.61 

 

 

930.51 

 

 

WPD 
 

 

 

 

475.5 

 

 

956.93 

 

 

957.82 

 

 

958.33 

 

 

961.24 

 

PD 

 

700.7 1403.5 1403.6 1403.9 1404.9 

AD 

 

700.7 1403.5 1403.6 1403.9 1404.9 

DPD 

 

960.8 1923.7 1923.8 1924.2 1925.1 

 

 

 

 

 

 

 

WEP

D 

 

 

 

 

 

 

357.8 

 

 

723.65 

 

 

724.28 

 

 

727.20 

 

 

732.59 
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Set 

2 

 

 

WPD 

 

 

439.2 884.39 884.76 887.05 891.09 

EPD 

 
 

 

460.1 926.21 926.58 928.87 932.91 

TPP

D  

 

460.1 

 

924.21 

 

924.39 925.98 928.68 

 

WLn

D 

 

 

 

 

 

475.9 

 

957.86 

 

958.23 

 

960.52 

 

964.56 

PD 

 

630.7 1263.5 1263.5 1264.4 1265.7 

AD 

 

700.7 1411.6 1411.6 1412.4 1413.8 

DPD 

 

862.9

92 

1727.9

84 

1728.0

44 

1728.8

71 

1730.2

19 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Unilag Journal of Mathematics and Applications, Volume 1, Issue 1, 2021 

 

LAGJMA-2021/01   UNILAG JOURNAL OF MATHEMATICS AND APPLICATIONS  118 

Appendix 

Here, we follow (Tahir et al., 2016), (Uwaeme et al., 2018) and (leren et al., 2018); and also used 

binomial expansion to derive the useful equations under moment. We have 
 

{1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽−1

= ∑ ∑ ∑ (−1)𝑖+𝑗+𝑘∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 [1 +

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]
𝑖+𝑗+𝑘

𝑒−𝑖,𝑗,𝑘𝛼𝑦
  

also the binomial expansion of  [1+ 𝛼𝑦(𝛼𝑦+2)

𝛼2+2
]
𝑖+𝑗+𝑘

given by 

 

[1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
]

𝑖+𝑗+𝑘

= ∑∑ ∑ (
𝑖
𝑝
)

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

(
𝑗
𝑞
) (

𝑘
𝑟
) [

𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
]

𝑝+𝑞+𝑟

 

= ∑∑∑(
𝑖

𝑝
)

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

(
𝑗

𝑞
) (

𝑘

𝑟
)

𝛼𝑦(𝑝+𝑞+𝑟)

(𝛼4 + 6)𝑝+𝑞+𝑟
∑(

𝑝

𝑞)∑(
𝑞

𝑟
) 3𝑞 . 2𝑟 . 𝛼2𝑝−𝑞−𝑟 . 𝑦2𝑝−𝑞−𝑟

𝑞

𝑟=0

𝑝

𝑞=0

 

Therefore, 

{1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦}

𝛽−1

= ∑(
𝛽 − 1

𝑖
)∑(

𝜆
𝑗
) ∑ (

𝜃
𝑘
) (−1)𝑖+𝑗+𝑘 ∑ (

𝑖
𝑝
)

∞

𝑝=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

 

∑ (
𝑗
𝑞
)∑ (

𝑘
𝑟
)3𝑞 . 2𝑟 . 𝛼2𝑝−𝑞−𝑟 . 𝑦2𝑝−𝑞−𝑟∞

𝑟=0
∞
𝑞=0                           

= ∑(
𝛽 − 1

𝑖
)∑(

𝜆

𝑗
)∑(

𝜃

𝑘
) (−1)

𝑖+𝑗+𝑘

∑(
𝑖

𝑝
)

∞

𝑝=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

∑(
𝑗

𝑞
)∑(

𝑘

𝑟
)

𝜆. 𝛽. 𝜃. 3𝑞 . 2𝑟 . 𝛼3𝑗−𝑞−𝑘+5 

(𝛼4 + 6)𝑗+𝑞+𝑘+1

∞

𝑟=0

∞

𝑞=0

 

              ∫ 𝑦𝑠+3𝑗−𝑞−𝑘∞

0
𝑒−𝛼𝑦(𝑖+𝑗+𝑘+1)𝑑𝑦         (o) 

 

{1 − [1 +
𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
] 𝑒−𝛼𝑦}

𝛽

= ∑ (
𝛽
𝑖
) (−1)𝑖 ∑ (

𝑖
𝑝
)∞

𝑝=0
∞
𝑖=0 ∑ (

𝑗
𝑞
)∑ (

𝑘
𝑟
) 3𝑞 . 2𝑟 . 𝛼2𝑝−𝑞−𝑟 . 𝑦2𝑝−𝑞−𝑟∞

𝑟=0
∞
𝑞=0    

∑(
𝛽 − 1

𝑖
)∑(

𝜆
𝑗
) ∑ (

𝜃
𝑘
) (−1)𝑖+𝑗+𝑘 ∑ (

𝑖
𝑝
)

∞

𝑝=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

∑ (
𝑗
𝑞
)∑ (

𝑘
𝑟
)
𝜆. 𝛽. 𝜃. 3𝑞 . 2𝑟 . 𝛼3𝑗−𝑞−𝑘+4 

(𝛼4 + 6)𝑝+𝑞+𝑟+1

∞

𝑟=0

∞

𝑞=0

 

∫ 𝑦𝑠+3𝑗−𝑞−𝑘+3∞

0
𝑒−𝛼𝑦(𝑖+𝑗+𝑘+1)𝑑𝑦.                           (p) 

= ∑ ∑ ∑ (
𝑖

𝑝
)∞

𝑘=0
∞
𝑗=0

∞
𝑖=0 (

𝑗

𝑞
) (

𝑘

𝑟
)

𝛼𝑦(𝑝+𝑞+𝑟)

(𝛼4+6)𝑝+𝑞+𝑟
∑ (

𝑝

𝑞)∑ (
𝑞

𝑟
) ∫ 𝑒−𝛼𝑦(𝑖+𝑗+𝑘+1)∞

0
𝑑𝑦.

𝑞

𝑟=0

𝑝

𝑞=0       (q) 

 

Then,  

[−𝑙𝑜𝑔 [1 − [1 +
𝛼3𝑦3 + 3𝛼2𝑦2 + 6𝛼𝑦

𝛼4 + 6
] 𝑒−𝛼𝑦]

𝛽𝑖

]

𝜃(𝑗+1)−1

= ∑∑∑
(−1)𝑝+𝑞+𝑟+1(𝛽𝑖)(𝜃(𝑖 + 1))

(𝛽𝑖)(𝜃(𝑖 + 1) − 1 − 𝑝)

𝑞

𝑟

𝑝

𝑞

∞

𝑝

 

        (
𝑞 − (𝜃(𝑖 + 1) − 1)

𝑞
) (

𝑞
𝑝) (

(𝜃(𝑖 + 1) − 1) + 𝑞
6

)∫ 𝑒−𝛼𝑦(𝑖+𝑗+𝑘+1)∞
0 𝑑𝑦             (r) 

 

𝑒
−𝜆[−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽

]

𝜃

= ∑
(−1)𝑖𝜆𝑖

𝑖!
∞
𝑖  [−𝑙𝑜𝑔[1−[1+

𝛼3𝑦3+3𝛼2𝑦2+6𝛼𝑦

𝛼4+6
]𝑒−𝛼𝑦]

𝛽𝑖

]

𝜃𝑗

          

= ∑ ∑ ∑ ∑
(−1)𝑖+𝑝+𝑞+𝑟+1(𝜆𝑖)(𝛽𝑖)(𝜃(𝑖+1))

𝑖! (𝛽𝑖)(𝜃(𝑖+1)−1−𝑝)

𝑞
𝑟

𝑝
𝑞

∞
𝑝

∞
𝑖   (

𝑞 − (𝜃(𝑖 + 1) − 1)
𝑞

) (
𝑞
𝑝) (

(𝜃(𝑖 + 1) − 1) + 𝑞
6

) 

                                                  ∫ 𝑒−𝛼𝑦(𝑖+𝑗+𝑘+1)∞

0
𝑑𝑦               (s) 

Since ∫ 𝑦𝑛𝑒−𝛽𝑦𝑑𝑦 =
Γ(𝑛+1)

𝛽𝑛+1

∞

0
 and Γ(𝛽) = (𝛽 − 1)! 

 

Substituting and simplifying (o, p, q, r, and s), we have 
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= ∑ (
𝛽 − 1

𝑖
)∑ (

𝜆
𝑗
)∑ (

𝜃
𝑘
) (−1)𝑖+𝑗+𝑘 ∑ (

𝑖
𝑝
)∞

𝑝=0
∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 ∑ (

𝑗
𝑞
)∑ (

𝑘
𝑟
)

𝜆.𝛽.𝜃.3𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+5 

(𝛼4+6)𝑗+𝑞+𝑘+1
∞
𝑟=0

∞
𝑞=0  

. 𝛼−(𝑠+3𝑗−𝑞−𝑘+1) (𝑠+3𝑗−𝑞−𝑘)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+1                                                  (t) 

 

= ∑(
𝛽 − 1

𝑖
)∑(

𝜆
𝑗
) ∑ (

𝜃
𝑘
) (−1)𝑖+𝑗+𝑘 ∑ (

𝑖
𝑝
)

∞

𝑝=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

∑ (
𝑗
𝑞
)∑ (

𝑘
𝑟
)
𝜆. 𝛽. 𝜃. 3𝑞 . 2𝑟 . 𝛼3𝑗−𝑞−𝑘+4 

(𝛼4 + 6)𝑝+𝑞+𝑟+1

∞

𝑟=0

∞

𝑞=0

 

. 𝛼−(𝑠+3𝑗−𝑞−𝑘+4) (𝑠+3𝑗−𝑞−𝑘+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+4                                                   (u) 

= ∑ ∑ ∑ (
𝑖
𝑝
)∞

𝑘=0
∞
𝑗=0

∞
𝑖=0 (

𝑗
𝑞
) (

𝑘
𝑟
)

𝛼𝑦(𝑝+𝑞+𝑟)

(𝛼4+6)𝑝+𝑞+𝑟
∑ (

𝑝
𝑞)∑ (

𝑞
𝑟
)

𝛽.𝜃.2𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+3 

(𝛼4+6)𝑝+𝑞+𝑟+1 .
𝑞
𝑟=0

𝑝
𝑞=0

(𝑠+3𝑗−𝑞−𝑘+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+3             (v)                                                    

= ∑ ∑ ∑
(−1)𝑝+𝑞+𝑟+1(𝛽𝑖)(𝜃(𝑖+1))

(𝛽𝑖)(𝜃(𝑖+1)−1−𝑝)

𝑞
𝑟

𝑝
𝑞

∞
𝑝 (

𝑞 − (𝜃(𝑖 + 1) − 1)
𝑞

) (
𝑞

𝑝) (
(𝜃(𝑖 + 1) − 1) + 𝑞

6
)

𝛽.𝜃.2𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+3 

(𝛼4+6)
𝑝+𝑞+𝑟+1   

. 𝛼−(𝑠+3𝑗−𝑞−𝑘+3) (𝑠+3𝑗−𝑞−𝑘+3)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+3                                                  (w)   

= ∑ ∑ ∑ ∑
(−1)𝑖+𝑝+𝑞+𝑟+1(𝜆𝑖)(𝛽𝑖)(𝜃(𝑖+1))

𝑖! (𝛽𝑖)(𝜃(𝑖+1)−1−𝑝)

𝑞
𝑟

𝑝
𝑞

∞
𝑝

∞
𝑖   (

𝑞 − (𝜃(𝑖 + 1) − 1)
𝑞

) (
𝑞
𝑝) (

(𝜃(𝑖 + 1) − 1) + 𝑞
6

) 

𝜆.𝛽.𝜃.3𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+4 

(𝛼4+6)𝑝+𝑞+𝑟+1 . 𝛼−(𝑠+3𝑗−𝑞−𝑘+1) (𝑠+3𝑗−𝑞−𝑘)!

[𝑖+1]𝑠+3𝑗−𝑞−𝑘+1                (x) 
                                       

We let 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 represent part of the expressions in (t, u, v, w and x) as follows: 

    𝐴𝑖,𝑗,𝑞,𝑘 = ∑ (
𝛽 − 1

𝑖
)∑ (

𝜆

𝑗
)∑ (

𝜃

𝑘
) (−1)

𝑖+𝑗+𝑘

∑ (
𝑖

𝑝
)∞

𝑝=0
∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 ∑ (

𝑗

𝑞
)∑ (

𝑘

𝑟
)

𝜆.𝛽.𝜃.3𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+5 

(𝛼4+6)𝑗+𝑞+𝑘+1

∞
𝑟=0

∞
𝑞=0 . 𝛼−(𝑠+3𝑗−𝑞−𝑘+1)         (i) 

 

   𝐵𝑖,𝑗,𝑞,𝑘 = ∑ (
𝛽 − 1

𝑖
)∑ (

𝜆
𝑗
)∑ (𝜃

𝑘
) (−1)

𝑖+𝑗+𝑘
∑ (

𝑖
𝑝)∞

𝑝=0
∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 ∑ (

𝑗
𝑞)∑ (𝑘

𝑟
)

𝜆.𝛽.𝜃.3𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+4 

(𝛼4+6)
𝑝+𝑞+𝑟+1

∞
𝑟=0

∞
𝑞=0 . 𝛼−(𝑠+3𝑗−𝑞−𝑘+4) (ii) 

     𝐶𝑖,𝑗,𝑞,𝑘 = ∑ ∑ ∑ (
𝑖
𝑝)∞

𝑘=0
∞
𝑗=0

∞
𝑖=0 (

𝑗
𝑞) (𝑘

𝑟
)

𝛼𝑦(𝑝+𝑞+𝑟)

(𝛼4+6)
𝑝+𝑞+𝑟 ∑ (

𝑝
𝑞)∑ (

𝑞
𝑟)

𝛽.𝜃.2𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+3 

(𝛼4+6)
𝑝+𝑞+𝑟+1

𝑞
𝑟=0

𝑝
𝑞=0                    (iii) 

𝐷𝑖,𝑗,𝑞,𝑘 = ∑∑∑
(−1)𝑝+𝑞+𝑟+1(𝛽𝑖)(𝜃(𝑖 + 1))

(𝛽𝑖)(𝜃(𝑖 + 1) − 1 − 𝑝)

𝑞

𝑟

𝑝

𝑞

∞

𝑝

(
𝑞 − (𝜃(𝑖 + 1) − 1)

𝑞
) (

𝑞
𝑝) (

(𝜃(𝑖 + 1) − 1) + 𝑞
6

) 

                             
𝛽.𝜃.2𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+3 

(𝛼4+6)𝑝+𝑞+𝑟+1 . 𝛼−(𝑠+3𝑗−𝑞−𝑘+3)
                              (iv) 

and  

 

𝐸𝑖,𝑗,𝑞,𝑘 = ∑ ∑ ∑ ∑
(−1)𝑖+𝑝+𝑞+𝑟+1(𝜆𝑖)(𝛽𝑖)(𝜃(𝑖+1))

𝑖! (𝛽𝑖)(𝜃(𝑖+1)−1−𝑝)

𝑞
𝑟

𝑝
𝑞

∞
𝑝

∞
𝑖   (

𝑞 − (𝜃(𝑖 + 1) − 1)
𝑞

) (
𝑞
𝑝) (

(𝜃(𝑖 + 1) − 1) + 𝑞
6

) 

               
𝜆.𝛽.𝜃.3𝑞 .2𝑟 .𝛼3𝑗−𝑞−𝑘+4 

(𝛼4+6)𝑝+𝑞+𝑟+1 . 𝛼−(𝑠+3𝑗−𝑞−𝑘+1)                                (v) 

Hence, the s-th order moment about the origin, 𝐸(𝑌𝑠) of the WEP distribution is given by  

in (2.5.4) above 
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