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A CLASS OF POWER FUNCTION DISTRIBUTIONS: ITS
PROPERTIES AND APPLICATIONS

MATTHEW EKUM∗, MUMINU ADAMU, AND ENO AKARAWAK

Abstract. The T-R{Y} framework is a method of generating convoluted
probability distributions; which has generalized most of the existing methods.
In the T-R{Y} framework, three independent distributions, T , R, and Y are
combined to form a new distribution, X, where R is the baseline distribution.
The new distribution X is a weighted hazard function of the baseline dis-
tribution, R. Some distributions like Normal, Weibull, Uniform, Cauchy, and
Gamma have been used as baseline distributions. However, the Power function
distribution, despite its flexibility and simplicity of its functional form, has not
been used as a baseline distribution in the T-R{Y} framework. In this work, we
developed the T-Power function{Y} family of distributions using the T-R{Y}
framework. We generated twelve convoluted distributions from the family de-
veloped, and derived the properties of Gamma-Power function{Log-logistic}
distribution (GPLD) as a special case. The maximum likelihood estimation
(MLE) method is used to estimate the parameters of the proposed distribu-
tion. A simulation study and application to two real-life datasets were carried
out. The application results shows that the new GPLD perform favourable.

1. Introduction

One of the distributions of interest that needs to be explored is the power
function distribution. It is a flexible lifetime distribution, which may be obtained
through a simple transformation of the Pareto, beta, Kumaraswamy, and uniform
distributions ([1]). The follwoing authors, [2], [3], [4], [5] , [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], and [17] studied power function distribution and
commented on its flexibility.

[18] defined convoluted distribution as the combination of two or more distri-
butions to form a new distribution or any transformation done to an existing
distribution to form a new distribution. The new distribution is a hybrid, which
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is expected to perform better than the individual distributions. Many convoluted
distributions have been derived from power function distribution but the power
function distribution has not been generalized using the T-R{Y} framework. So,
there is a need to generalized the power function distribution using the T-R{Y}
framework.

It is observed that distributions like Normal, Weibull, Uniform, and Gamma
have been used as baseline distributions (R) in the T-R{Y} framework, but the
Power function distribution, despite its flexibility and simplicity of its functional
form, has not been used as a baseline distribution in the T-R{Y} framework.
The motivation in this research is related to the flexibility of the power function
distribution with its simple functional form, as well as its upper bound parameter.

The T-R{Y} framework metamorphosed from beta-X by [19] to T-X by [20],
and further extended to T-X(W) by [21] . [22] unified the T-X family to a more
generalized framework, T-R{Y} and many distributions have been derived from
this framework (see [21]; [22]; [23]; [24]; [25]; [26]; [27]; [28]; [29] and [30].

Take T , R and Y to be random variables with known cumulative distribution
functions (cdfs), FT (x), FR(x) and FY (x) respectively. Also, let fT (x), fR(x) and
fY (x) be their corresponding probability density functions (pdfs) with known
quantile functions QT (x), QR(x) and QY (x) respectively.

Then the cdf of the T-R{Y} family of distributions is given by

FX(x) =

∫ QY [FR(x)]

a

fT (t)dt = FT{QY [FR(x)]}. (1.1)

where fT (t) is the pdf of a random variable T , QY [.] is the quantile function of a
random variable Y and FR(x) is the cdf of a random variable R. is differentiable
and monotonically non-decreasing. It is necessary that and fT (t) have the same
support [22]. The pdf of T-R{Y} given in (1.1) as defined by [22] is given by

fX(x) = fR(x)
fT{QY [FR(x)]}
fY {QY [FR(x)]}

. (1.2)

The pdf in (1.2) is a weighted hazard function of the random variable R. So, the
pdf in (1.2) is the generalization of random variable R.

In this article, we propose some classes of generalized power function distribu-
tions, the T-Power{Y} family, and studied some of its properties and applications.
A member of the T-power{Y} family called the Gamma-Power function distribu-
tion (GPLD) was studied in detail and applied to two real data. The remaining
parts of this research are unfolded as follows. In Section 2, we consider the T-
power{Y} classes of distributions and define some new generalized families. We
investigate some structural properties of the newly formed GPLD, which is a spe-
cial case of the T-Power{Y} family. We defined the moment, moment generating
function, mean and median deviations of the proposed GPLD. The maximum
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likelihood estimation technique was used to estimate the parameters of the pro-
posed GPLD. In Section 3, we explored the consistency and the usefulness of the
proposed GPLD using a simulation study and two real-life applications. Finally,
Section 4 offers some concluding remarks.

2. Materials and Methods

This section includes the developmental procedures of generating the proposed
distribution, characterisation and derivation of its properties.

2.1. Developing the T-Power Function{Y} Distribution.

Proposition 2.1. The pdf in Equation (1.2) is proper, that is, the integral of the
pdf in Equation (1.2) is equal to 1.

Proof. ∫
fX(x)dx =

∫
fR(x)

fT{QY [FR(x)]}
fY {QY [FR(x)]}

dx, (2.1)

where FR(x) is cdf of R distribution, fR(.), fT (.) and fY (.) are the pdf of R, T ,
and Y distributions respectively, and QY (.) is the quantile function of Y distri-
bution. Note that T , R, and Y are known distributions with true pdf.

From equation (1.2), we have

fX(x)

fR(x)
=
fT{QY [FR(x)]}
fY {QY [FR(x)]}

. (2.2)

So that ∫ ∞
a

fX(x)dx =

∫ ∞
a

fR(x)
fX(x)

fR(x)
dx. (2.3)

Therefore,
3 errors17 warnings ∫ ∞

a

fX(x)dx = 1. (2.4)

�
Equation (2.4) completes the proof. This shows that if the pdf of random

variables T , R, and Y are known to be true pdfs, then the pdf developed by
combining them using T-R{Y} framework is also a true pdf.
The framework of some pdf and cdf for convoluted distribution that are member
of the T-R{Y} family are presented in Table 1. These frameworks can be used
by any study to generate univariate distributions by rightly choosing the random
variables T , R and Y . Table 1 is used to generate 12 continuous probability
distributions, two from each quantile function in this study.

From Table 1, SR(x), hR(x), HR(x), and AR(x) are the survival, hazard, cu-
mulative hazard and reverse hazard functions of X given respectively as

SX(x) = 1− FX(x), (2.5)

hX(x) =
fX(x)

1− FXx
, (2.6)
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Table 1. Framework of Convoluted Distributions Formed using
T-R{Y} Framework

Sn Family PDF CDF
1 T-R{exponential} fX(x) = hR(x)fT [HR(x)] FX(x) = FT [HR(x)]

2 T-R{log-logistic} fX(x) = fR(x)
[SR(x)]2

fT

[
fR(x)
SR(x)

]
FX(x) = FT

[
fR(x)
SR(x)

]
3 T-R{frechet} fX(x) = AR(x)

{ln[FR(x)]}2fT

[
− 1
ln[FR(x)]

]
FX(x) = FT

[
− 1
ln[FR(x)]

]
4 T-R{logistic} fX(x) = hR(x)

FR(x)
fT

{
ln
[
FR(x)
SR(x)

]}
FX(x) = FT

{
ln
[
FR(x)
SR(x)

]}
5 T-R{extreme value} fX(x) = hR(x)fT (−ln{−ln[FR(x)]})

−FR(x)ln[FR(x)]
FX(x) = FT (−ln{−ln[FR(x)]})

6 T-R{uniform} fX(x) = fR(x)fT [FR(x)] FX(x) = FT [FR(x)]

HX(x) = −ln[1− FX(x)]. (2.7)

and

AX(x) =
fX(x)

FXx
, (2.8)

All the distributions generated using this method have their quantile function.
The relationship between the new random variable X and T is given by T =
QY [FR(x)] and thus, X = F−1

R [FY (T )] = QR[FY (T )], where F−1
R [.] exists. Using

this relation, random variable X can be generated by generating the random
variable T and then computing X = F−1

R [FY (T )]. Alternatively, the cdf in (1.1)
is a composite function of the form (T.Y.R)(x). The inverse function is given by

QX(p) = QR{FY [QT (p)]}, p ∈ [0, 1]. (2.9)

Lemma 2.2. If h(z) and H(z) are the hazard function and cumulative hazard
function of random variable Z respectively, then H ′(x) = h(x) and

∫
h(z)dz =

H(z).

Proof. By definition H(z) = −ln[1−F (z)]. By using chain rule, let u = 1−F (z),
so that H(z) = −lnu.

du

dz
= −f(z) (2.10)

and
dH(z)

du
= −1

u
(2.11)

So that
dH(z)

dz
= −f(z)

u
(2.12)

But u = 1− F (z), so that,

dH(z)

dz
= − f(z)

1− F (z)
(2.13)

�
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Conversely, we need to show that
∫
h(z)dz = H(z)

By definition f(z)
1−F (z)

. Hence, integrating both sides with respect to z gives

H(z) =

∫
h(z)dz =

∫
f(z)

1− F (z)
dz = −ln[1− F (z)] (2.14)

Thus, Equation (2.14) ends the proof.

Theorem 2.3. If h(z) and H(z) are the hazard function and cumulative hazard
function of random variable Z respectively, then

∫
[H(z)h(z)]dz = 1

2
[H(z)]2

Using integration by part. Let uH(z) and dv = h(z)dz, du = h(z)dz and
v = H(z). So, ∫

H(z)h(z)dz = H(z)H(z)−
∫
H(z)h(z)dz (2.15)

Collect like terms and solving gives the required result as∫
H(z)h(z)dz =

1

2
[H(z)]2 (2.16)

Thus, Equation (2.16) completes the proof.

2.2. T -Power Function{Y} Classes of Distributions. Let R be a random
variable that follows a two-parameter power function distribution with cdf and
pdf given by

FR(x) =
(x
λ

)2

(2.17)

and

fR(x) =

(
k

λk

)
xk−1 (2.18)

respectively (see [28]). The cdf of T-Power function{Y} or simply T-P{Y} class
of distributions is derived by inserting Equation (2.17) into (1.1) and it is given
as

FX(x) =

∫ QY

[
( xλ)

k
]

0

fT (t)dt = FT

{
QY

[(x
λ

)k]}
. (2.19)

The pdf corresponding to Equation (2.19) is derived by inserting Equations (2.17)
and (2.18) into equation (1.2) and it is given as

fX(x) =
k

λk
xk−1

fT

{
QY

[(
x
λ

)k]}
fY

{
QY

[(
x
λ

)k]} (2.20)

Thus, equations (2.19) and (2.20) are the cdf and pdf of T-P{Y} family of dis-
tributions respectively. The survival, hazard, cumulative hazard and reversed
hazard functions for T-P{Y} family are respectively derived as

SX(x) = 1− FT
{
QY

[(x
λ

)k]}
, (2.21)
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hX(x) =
kxk−1fT

{
QY

[(
x
λ

)k]}
λkfY

{
QY

[(
x
λ

)k]}(
1− FT

{
QY

[(
x
λ

)k]}) , (2.22)

HX(x) = 1− ln
(

1− FT
{
QY

[(x
λ

)k]})
(2.23)

and

AX(x) =
kxk−1fT

{
QY

[(
x
λ

)k]}
λkfY

{
QY

[(
x
λ

)k]}(
FT

{
QY

[(
x
λ

)k]}) . (2.24)

Remark 2.4. If X is T -Power{Y} distributed, then it follows that

i. X
d
= λ[FY (T )]1/k,

ii. QX(p) = λ{FY [QT (p)]}1/k,

iii. If T
d
= Y , then X = Power function (k, λ) in distribution and

iv. If Y = Power function (k, λ), then X
d
= T .

The T-P{Y} family of distributions in Equation (2.19) can be used to generate
many different classes of power function distributions. Some generalized power
function families using the quantile functions displayed on Table 1 are generated.

2.2.1. T -Power{exponential}. Let T ∈ [0,∞] be any random variable. By substi-
tuting hR(x) andHR(x) into item 1 of Table 1, the cdf and pdf of T -P{exponential}
family are respectively given by

FX(x) = FT
[
−ln(λk − xk)

]
(2.25)

and

fX(x) =
kxk−1

(λk − xk)
fT
[
−ln(λk − xk)

]
; k, λ > 0; 0 ≤ x ≤ λ. (2.26)

2.2.2. T -Power{log-logistic}. Let T ∈ [0,∞] be any random variable. By substi-
tuting FR(x) and SR(x) into item 2 of Table 1, the cdf and pdf of T -P{log-logistic}
family are respectively given by

FX(x) = FT

(
xk

λk − xk

)
(2.27)

and

fX(x) =
kλkxk−1

(λk − xk)2
fT

(
xk

λk − xk

)
; k, λ > 0; 0 ≤ x ≤ λ. (2.28)

2.2.3. T -Power{frechet}. Let T ∈ [0,∞] be any random variable. By substituting
FR(x) and fR(x) into item 3 of Table 1, the cdf and pdf of T -P{frechet} family
are respectively given by

FX(x) = FT

[
− 1

ln
(
x
λ

)k
]

(2.29)
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and

fX(x) =
k

x
[
ln
(
x
λ

)k]2fT

[
− 1

ln
(
x
λ

)k
]

; k, λ > 0; 0 ≤ x ≤ λ. (2.30)

The T -Power{exponential}, T -Power{log-logistic} and T -Power{frechet} will take
care of any T supported on the interval [0,∞), like the Rayleigh, gamma, Weibull,
Lomax and Dagum. This is because exponential, log-logistic and frechet distri-
butions are supported on the interval [0,∞).

2.2.4. T -Power{logistic}. Let T ∈ [−∞,∞] be any random variable. By substi-
tuting FR(x) and hR(x) into item 4 of Table 1, the cdf and pdf of T -P{logistic}
family are respectively given by

FX(x) = FT

[
ln

(
xk

λk − xk

)]
(2.31)

and

fX(x) =
k

x (λk − xk)
fT

[
ln

(
xk

λk − xk

)]
; k, λ > 0; 0 ≤ x ≤ λ. (2.32)

2.2.5. T -Power{extreme value}. Let T ∈ [−∞,∞] be any random variable. By
substituting HR(x) and hR(x) into item 5 of Table 1, the cdf and pdf of T -
P{extreme value} family are respectively given by

FX(x) = FT [−ln (−klnx)] (2.33)

and

fX(x) =
k

x (λk − xk) ln
(
x
λ

)k fT {−ln [−ln(xλ)k
]}

; k, λ > 0; 0 ≤ x ≤ λ. (2.34)

The T-P{logistic} and T-PP{extreme valueP} will take care of any T supported
on the open interval (−∞,∞), like the normal, Cauchy, Laplace, Gumbel etc.
This is because logistic distribution is also supported on the interval (−∞,∞).

2.2.6. T -Power{uniform}. Let T ∈ [0, 1] be any random variable. By substitut-
ing FR(x) and fR(x) into item 6 of Table 1, the cdf and pdf of T -P{uniform}
family are respectively given by

FX(x) = FT

(x
λ

)k
(2.35)

and

fX(x) =
k

λk
xk−1fT

(x
λ

)k
; k, λ > 0; 0 ≤ x ≤ λ. (2.36)

The T-P{uniform} will take care of any T supported on the closed interval [0, 1],
like the beta, Kumaraswamy etc. This is because standard uniform distribution
is supported on the closed interval [0, 1].
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2.3. General Properties of T-P{Y} Family. In this section, some properties
of T-P{Y} are investigated. The following lemmas are given to establish the
relationships between X and T in order to simulate variates of X from the variates
of T .

Lemma 2.5. (Useful Transformation). If T is a random variate from pdf
fT (x), then random variate.

(i) X = λ[1 − exp(−T )]1/k follows the T-P{exponential}family of distribu-
tions, provided T ∈ [0,∞).

(ii) X = λ
(

T
1+T

)1/k
follows the T-P{log-logistic}family of distributions, pro-

vided T ∈ [0,∞).
(iii) X = exp

{
λ[−(T )−1]1/k

}
follows the T-P{frechet}family of distributions,

provided T ∈ [0,∞).

(iv) X = λ
(

e−T

1+e−T

)1/k

follows the T-P{logistic}family of distributions, pro-

vided T ∈ (−∞,∞).

(v) X = λ
(

1− e−eT
)1/k

follows the T-P{extreme value}family of distribu-

tions, provided T ∈ (−∞,∞).
(vi) X = λT 1/k follows the T-P{uniform}family of distributions, provided T ∈

[0, 1].

Proof. It result is obvious from Remark 2.4 (i). �
Lemma 2.5 will be very useful in deriving some members of the generalized

power function distributions. All existing univariate continuous probability dis-
tributions must satisfy at least one of the 6 situations in Lemma 2.5. We can
generate random variate X if T is known.

Lemma 2.6. (Quantile functions). It follows from Lemma 2.2 that the quan-
tile functions of (i) T-P{exponential}, (ii) T-P{log-logistic}, (iii) T-P{frechet},
(iv) T-P{logistic}, (v) T-P{exreme value} and (vi) T-P{uniform} families are
given respectively by:

(i) QX(p) = λ{1− exp[−QT (p)]}1/k

(ii) QX(p) = λ
[

QT (p)
1+QT (p)

]1/k

(iii) QX(p) = exp
(
λ{−[QT (p)]−1}1/k

)
(iv) QX(p) = λ{1− exp[−QT (p)]}1/k

(v) QX(p) = λ
[
1− e−eQT (p)

]1/k

(vi) QX(p) = λ[QT (p)]1/k

Proof. It is also very obvious to see the result from Remark 2.4 (ii). �
Lemma 2.6 will be very useful in deriving the quantile functions of the gener-

alized power function distributions. With this, we can easily derive the median
and other measures of partition.

We generated the following twelve convoluted distributions from the T -P{Y}
family developed.
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i Exponential-power function {uniform} distribution pdf is given by

fX(x) =
α

βα

(
x

β

)α−1

exp

[
−
(
x

β

)α]
;α, β > 0;x ≥ 0.

This concides with a Weibull distribution (see Weibull, 1951).
ii Rayleigh-Power function {log-logistic} distribution pdf is given by

fX(x) =
1

σ2

(
xk

1− xk

)2

exp

[
− 1

2σ2

(
xk

1− xk

)2
]

;σ, k > 0; 0 ≤ x ≤ 1.

iii Four parameters Gamma-Power function {log-logistic} distribution pdf is
given by

fX(x) =
kλkβαxαk−1

Γ(α)(λk − xk)α+1
exp

[
−β
(

xk

λk − xk

)]
; α, β, k, λ > 0; 0 ≤ x ≤ λ.

iv Four parameters Weibull-Power function {log-logistic} distribution. This
concides with the distribution proposed by Tahir et al. (2014) and it is
given by

fX(x) =
αβkλkxkα−1

(λk − xk)α+1
exp

[
−β
(

xk

λk − xk

)α]
; α, β, k, λ > 0; 0 ≤ x ≤ λ.

v Lomax-Power function {log-logistic} distribution pdf is given by

fX(x) =
1

λ

(
xk

1− xk

)2 [
1 +

1

λ

(
xk

1− xk

)]−( xk

1−xk
+1
)

;λ, k > 0; 0 ≤ x ≤ 1.

vi Dagum-Power function {Frechet} distribution pdf is given by

fX(x) =
ap

bap
(−klogx)1−ap [1− bklogx]−(p+1) ; a, b, p, k > 0; 0 ≤ x ≤ 1.

vii Kumaraswamy-power function {uniform} distribution pdf is given by

fX(x) = abkxak−1(1− xak)b−1; a, b, k > 0; 0 ≤ x ≤ 1.

viii Cauchy-Power function {logistic} distribution pdf is given by

fX(x) =
k

πσ

[
1

xk(1− xk)

] 1

1− 1
σ2

[
log
(

xk

1−xk

)
− θ
]2

 ;σ, θ, k > 0; 0 ≤ x ≤ 1.

ix Three parameters Normal-power function {logistic} distribution pdf is
given by

fX(x) =
k

x(1− xk)
√

2πσ2
exp

{
− 1

2σ2

[
log

(
xk

1− xk

)
− µ

]2
}

;σ, µ, k > 0; 0 ≤ x ≤ 1.

x Four parameters Normal-power function {logistic} distribution pdf is given
by

fX(x) =
kλk

x(λk − xk)
√

2πσ2
exp

{
− 1

2σ2

[
log

(
xk

λk − xk

)
− µ

]2
}

;σ, µ, λ, k > 0; 0 ≤ x ≤ λ.
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xi Laplace-Power function {logistic} distribution pdf is given by

fX(x) =
k

2bx(1− xk)
exp

{
−1

b

[
log

(
xk

1− xk

)
− µ

]}
; b, µ, k > 0; 0 ≤ x ≤ 1.

xii Gumbel-Power function {extreme value} distribution pdf is given by

fX(x) =
keµ

β

{
xk−1(1− xk)β−1

[log(1− xk)]2

}
; β, µ, k > 0; 0 ≤ x ≤ 1.

Changing T distribution and Y distribution will produce different distributions
of this family, of which two of them have the same functional form with existing
distributions. A good example of an existing distribution in this family is the
Weibull distribution. We can also debate that all distributions with the form xk

where k can pick any form is a transformed power function distribution, which are
all members of the T -Power function{Y} family of distributions. In this article,
we focused on using the standard quantile function of log-logistic distribution,
which is the odd-ratio of the random variable R. In this work, we carefully study
some properties of Gamma-Power function{log-logistic} and test the flexibility of
its MLE parameter estimates.

2.4. Gamma-Power{log-logistic}.

2.4.1. Some Characterisations of Gamma-Power{log-logistic}.

Cumulative distribution function of Gamma-Power{log-logistic}. One of the most
important ways of characterising a probability distribution is through its cumu-
lative distribution function (cdf).

Theorem 2.7. Let X be a random variable that follows the Gamma-Power{log-
logistic} distribution where parameters α and β are from gamma distribution,
and k and λ are from power function distribution, then the cdf of X defined on a
closed interval [0, λ] is given by.

FX(x) =
1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]
Proof. Let T follows the gamma distribution with shape parameter α and scale
parameter β, that is

fT (t) =
βα

Γ(α)
tα−1exp(−βt), α, β > 0, t ≥ 0

The cdf of T is given by

FT (t) =
1

Γ(α)
γ (βt) (2.37)

Substitute equation (2.37) into (2.27) to have the cdf of GPLD

FX(x) =
1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]
; α, β, k, λ > 0; 0 ≤ x ≤ λ (2.38)

where γ
[
β
(

xk

λk−xk

)
, α
]

is an incomplete gamma function. �
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Equation (2.38) completes the proof. Equation (2.38) is the cdf of the developed
gamma-power function log-logistic distribution (GPLD). From now hence forth
the newly developed Gamma-Power{log-logistic} distribution will be regarded as
GPLD.
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Figure 1. The cdf of GPLD Distribution for λ = 1.

Figure 1 shows that the cdf of is a non-decreasing function. As x increases, the
cdf also increases.

Probability Density Function of GPLD. The probability density function (pdf)
of GPLD is derived by differentiating the cdf in equation (2.38) with respect to
x. The pdf of the proposed Gamma-Power{log-logistic} distribution is therefore
given by

fX(x) =
kλkβαxαk−1

Γ(α)(λk − xk)α+1
exp

[
−β
(

xk

λk − xk

)]
; α, β, k, λ > 0; 0 ≤ x ≤ λ

(2.39)
Figures 2 illustrates some possible shapes of the density function of the GPLD,

for selected parameter values. The density function can take various forms de-
pending on the parameter values. It is obvious that the GPLD has higher flex-
ibility than the gamma and the power function distributions, because of the
additional parameters, which allow for a high degree of flexibility of the GPLD.
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Figure 2. The pdf of GPLD Distribution for λ = 1.

It shows that for different parameter values α, β, k and for a constant λ, GPLD
can be positively or negatively skewed and can be leptokurtic or platykurtic. The
pdf has various shapes as displayed in Figure 1. So, the new distribution would
be very useful in many practical situations for modelling positive real data sets.

Survival Function of GPLD. By definition, the survival function of a random
variable X is given by

SX(x) = 1− FX(x) (2.40)

Substitute the cdf in equation (2.38) into (2.40) gives the survival function of
GPLD as

SX(x) = 1− 1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]
Hazard Function of GPLD.

Theorem 2.8. The hazard function of a random variable X that follows a GPLD
with parameters α, β, k, λ exist and it is given by

hX(x) =
kλkβαxαk−1exp

[
−β
(

xk

λk−xk

)]
(λk − xk)α+1

{
Γ(α)− γ

[
β
(

xk

λk−xk

)
, α
]} .

Proof. By definition, the hazard function of a random variable X is given by

hX(x) =
fX(x)

SX(x)
. (2.41)

Substitute the pdf in equation (2.39) and the survival function in equation (2.40)
into equation (2.41) to derive the hX(x) of GPLD as

hX(x) =
kλkβαxαk−1exp

[
−β
(

xk

λk−xk

)]
(λk − xk)α+1

{
Γ(α)− γ

[
β
(

xk

λk−xk

)
, α
]} . (2.42)
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�
Equation (2.42) completes the proof.

2.5. Cumulative Hazard Function of GPLD. By definition, the cumulative
hazard function of a random variable X is given by

HX(x) = −log[SX(x)] (2.43)

Let X be random variable that follows a GPLD with survival function given in
equation (2.40). The cumulative hazard function, HX(x) of GPLD is derived by
substituting equation (2.40) into (2.43) to have

HX(x) = −log
{

1− 1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}
(2.44)

Equation (2.44) is the cumulative hazard function of GPLD.

Reverse Hazard Function of GPLD.

Theorem 2.9. The revered hazard function of a random variable X that follows
a GPLD with parameters α, β, k, λ exist and it is given by

AX(x) =
kλkβαxαk−1exp

[
−β
(

xk

λk−xk

)]
(λk − xk)α+1

{
γ
[
β
(

xk

λk−xk

)
, α
]} .

Proof. By definition, the reversed hazard function of a random variable X is given
by

AX(x) =
fX(x)

FX(x)
. (2.45)

Substitute the pdf in Equation (2.39) and the cdf in Equation (2.38) into Equation
(2.45), we derive the AX(x) of GPLD as

τX(x) =
kλkβαxαk−1exp

[
−β
(

xk

λk−xk

)]
(λk − xk)α+1

{
γ
[
β
(

xk

λk−xk

)
, α
]} . (2.46)

�

2.6. Quantile Function of GPLD.

Definition 2.10. [22] The quantile function of a random variable X is the value
at which the probability of the random variable is less than or equal to the given
probability. It is the inverse function of the cdf and it is defined as

QX(x) = F−1
X (x) (2.47)

Recall the pdf of T -Power{log-logistic} given in Equation (41).

Lemma 2.11. Let T be a random variable with pdf fT (x), then random variate,

X = λ
(

T
1+T

)1/k
follows T -Power{log-logistic} family of distribution in Equation

(10), provided T is supported on the interval 0 to ∞, i.e, T ∈ [0,∞). The log-
logistic parameters, scale = shape = 1, where k and λ are the parameters from
the power function distribution.
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Proof. It is easy to see the result from Remark 2.4 (i). �

Lemma 2.12. It follows from Lemma 1 that the quantile functions of T-Power
function{log-logistic} distribution is given by

QX(p) = λ

[
QT (p)

1 +QT (p)

]1/k

(2.48)

Proof. It is easy to see the result from Remark 2.4 (i). �

Theorem 2.13. If T (α, β) follows a gamma distribution with parameters α and
β, then the quantile of GPLD with parameters α, β, k.λ is given by

QX(p) = λ

(
QT (α,β)(p)

1 +QT (α,β)(p)

)1/k

where QT (α,β) is the quantile function of gamma distribution with parameters α, β;
and k and λ are the parameters from the power function distribution.

Proof. Following Remarks 2.4 (i) and (ii), and Lemma (2.6) and (2.11). Substitute
the quantile function of gamma distribution into Lemma (2.11) to have

QX(p) = λ

(
QT (α,β)(p)

1 +QT (α,β)(p)

)1/k

(2.49)

where k is a shape parameter and λ is a scale parameter from the power function
distribution. �

It is easy to generate T using R codes. The rgamma generates random values
of gamma distribution, T . Then, use the transformation in Theorem (2.13) with
known α and β to generate random variates that follow GPLD.
The quantile function returns the value x such that

F (x) = P (X ≤ x) = p

The quantile function of a particular distribution is used in Monte Carlo method
to simulate random variates that follows such distribution. The quantile function
can be used to partition a distribution into different non-overlapping continuous
sections. We can determined the quartiles, octiles, deciles and percentiles using
the quantile function.

2.7. Moment of GPLD. The moment of a distribution is a very important
function for deriving the mean of the distribution. The series expansion of the
pdf of GPLD is given by

fX(x) =
kβα

Γ(α)

∞∑
i=0

∞∑
j=0

(−1)i(α + i+ j)!xk(α+i+j)−1

i!j!λk(α+i+j)
(2.50)

If i = j = 0, the series expansion of the pdf of GPLD given in equation (2.50)
will reduce to.

fX(x) =
α!kβα

Γ(α)λαk
xαk−1 (2.51)
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The rth moment of GPLD using the linear expansion pdf in equation (2.50) is
given by

E(xr) =
kλrβα

Γ(α)

∞∑
i=0

∞∑
j=0

(−1)i(α + i+ j)!

i!j![k(α + i+ j) + r]
(2.52)

If r = 1, we have the mean of GPLD given by

E(x) =
kλβα

Γ(α)

∞∑
i=0

∞∑
j=0

(−1)i(α + i+ j)!

i!j![k(α + i+ j) + 1]
(2.53)

If i = j = 0, the mean of GPLD becomes

E(x) =
(α− 1)!αkλβα

Γ(α)(αk + 1)
(2.54)

and the variance is given by

V ar(x) =
α!kλ2βα

Γ(α)(αk + 2)
| 1− α!kβα(αk + 2)

(αk + 1)
| (2.55)

2.8. Order Statistics of GPLD.

2.8.1. 1st Order Statistics of GPLD.

Lemma 2.14. Let X1, X2, ..., Xn be a random sample from the GPLD distribution
and X(1), X(2), , X(n), such that, X(1) ≤ X(2) ≤ ... ≤ X(n), are order statistics
obtained from the sample. Then the pdf fX1(x) of the 1st order statistics, X(1) is
given by

fX1(x) =
nkλkβαxαk−1

Γ(α)(λk − xk)α+1

{
1− 1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}n−1

exp

[
−β
(

xk

λk − xk

)]
Proof. By definition, 1st order statistic of a random variable X is given by

fX1(x) = − d

dx

n∏
i=1

[1− F (x)]n = n [1− F (x)]n−1 f(x) (2.56)

Substitute the cdf and pdf of GPLD in Equations (2.38) and (2.39) into (2.56)
to have the 1st order statistic of GPLD derived as

fX1(x) =
nkλkβαxαk−1

Γ(α)(λk − xk)α+1

{
1− 1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}n−1

exp

[
−β
(

xk

λk − xk

)]
(2.57)

�
Equation (2.57) completes the proof.
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2.8.2. nth Order Statistics of GPLD.

Lemma 2.15. Let X1, X2, ..., Xn be a random sample from the GPLD distribution
and X(1), X(2), , X(n), such that, X(1) ≤ X(2) ≤ ... ≤ X(n), are order statistics
obtained from the sample. Then the pdf fXn(x) of the nth order statistics, X(n) is
given by

fXn(x) =
nkλkβαxαk−1

Γ(α)(λk − xk)α+1

{
1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}n−1

exp

[
−β
(

xk

λk − xk

)]
Proof. By definition, nth order statistic of a random variable X is given by

fXn(x) = n [F (x)]n−1 f(x) (2.58)

Substitute the cdf and pdf of GPLD in equations (2.38) and (2.39) into (2.58) to
have the nth order statistic of GPLD derived as

fXn(x) =
nkλkβαxαk−1

Γ(α)(λk − xk)α+1

{
1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}n−1

exp

[
−β
(

xk

λk − xk

)]
(2.59)

�Equation (2.59) completes the proof.

2.8.3. General Order Statistics of GPLD.

Lemma 2.16. Let X(1), X(2), ..., X(n) denote the order statistics of a random sam-
ple that follows GPLD distribution, X1, X2, ..., Xn, from a continuous population
with cdf, FX(x) and pdf fX(x). Then the pdf fX(j)

(x) of GPLD is given by

fX(j)
(x) =

n!kλkβαxαk−1

(j − 1)!(n− j)!Γ(α)(λk − xk)α+1
exp

[
−β
(

xk

λk − xk

)]
Λ

where

Λ =

{
1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}j−1{
1− 1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}n−j
Proof. By definition, jth order statistic of a random variable X is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!
f(x) {F (x)}j−1 {1− F (x)}n−j (2.60)

Substitute the cdf and pdf of GPLD in equations (2.38) and (2.39) into (2.60) to
have the jth order statistic of GPLD derived as

fX(j)
(x) =

n!kλkβαxαk−1

(j − 1)!(n− j)!Γ(α)(λk − xk)α+1
exp

[
−β
(

xk

λk − xk

)]
Λ (2.61)

where

Λ =

{
1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}j−1{
1− 1

Γ(α)
γ

[
β

(
xk

λk − xk

)
, α

]}n−j
�

Equation (2.61) completes the proof.
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2.9. Maximum Likelihood Estimation (MLE). Taking the likelihood of the
pdf in (2.39) gives

L(α, β, k, λ) =
knλknβan

[Γ(α)]n

n∏
i=1

xαk−1
i

(λk − xki )α+1
exp

[
−β

n∑
i=1

(
xki

λk − xki

)]
(2.62)

Take the log to have

` = logL = nlog
k

Γ(α)
+ nklogλ+ αnlogβ (2.63)

+ (αk − 1)
n∑
i=1

logxi − (α + 1)
n∑
i=1

log(λk − xki )− β
n∑
i=1

xki
λk − xki

Partially differentiating the log-likelihood function in equation (2.63) produced
the following set of simultaneous equations.

0 =
∂`

∂α
= −nψ(α) + nlogβ + k

n∑
i=1

log(xi)−
n∑
i=1

log(λk − xki ) (2.64)

0 =
∂`

∂β
=
αn

β
−

n∑
i=1

xki
λk − xki

(2.65)

0 =
∂`

∂k
=
n

k
+nlogλ+α

n∑
i=1

log(xi) +k(α+ 1)
n∑
i=1

xk−1
i

λk − xki
−kβλk

n∑
i=1

xk−1
i

(λk − xki )2

(2.66)

0 =
∂`

∂λ
=
nk

λ
+ kλk−1(α + 1)

n∑
i=1

1

λk − xki
+ βkλk−1

n∑
i=1

xki
(λk − xki )2

(2.67)

where ψ(.) is called digamma function. Euler’s product formula for the gamma
function, combined with the functional equation and an identity for the Euler-
Mascheroni constant, yields the following expression for ψ(α) (Abramowitz and
Stegun, 1972),

ψ(α) = −γ +
∞∑
i=0

{ α− 1

(i+ 1)(i+ α)
};α > 0, (2.68)

It can also be approximated to

ψ(α) =
∞∑
j=0

1

(j + α)2
; j = 0, 1, 2, ..., (2.69)

where γ is the EulerMascheroni constant. The digamma function has values in
closed form for rational numbers, as a result of Gauss’s digamma theorem (Beal,
2003).

The maximum likelihood estimators of parameters α, β, k, and λ are the si-
multaneous solutions of equations (2.64) to (2.67).
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However, solving for α, β, k, and λ from the first partial derivatives of Equa-
tion (2.63) is difficult. Alternatively, the best values of the parameters can be
obtained by direct numerical maximisation of the log-likelihood function in Equa-
tion (2.63). This is relatively easy using a mathematical or statistical software
such as MATLAB or R. The procedure was implemented in R. Note that param-
eter λ cannot be solved using MLE method because λ is an upper bound. This
means that λ can only be estimated from order statistics or by λ = max(xi)+σx̄,
where σx̄ is the standard error of X estimated from data

We find the initial values for the remaining three parameters by first assuming
that the random sample is from power function distribution. We estimate k by
using the sample mean x̄. The moment estimates for the Power function parame-
ters k is given by k = x̄

λ−x̄ , x̄ < λ ([17]). Second, we transform the GPLD data to

that of a Gamma random sample by using Theorem (2.13) to obtain T = Xk

λk−Xk ,
where X follows GPLD and T follows Gamma distribution. We estimate α and
β by using the sample mean t̄ and the sample standard deviation σt̄. By using
the moment estimates for the Gamma parameters α and β, we obtain the initial

estimates for parameters α and β. These estimates are given by α = (t̄)2

(σt̄)
2 and

β = t̄
(σt̄)

2 , where t̄ = α
β

and σt̄ =
√
α
β

are the mean and standard deviation of T

respectively. The numerical procedure provided by R package (maxLik) is used
to produce the results ([31]).

3. Result

3.1. Simulation Study. The maximum likelihood method for estimating the
performance of GPLD is evaluated using Monte Carlo simulation for a total of
eighteen parameter combinations with 1000 replications. Three different sample
sizes n = 20, 200 and 1000 were considered, for small, medium and large samples
respectively. The actual values, maximum likelihood estimates, absolute bias
and standard errors of the parameter estimates were presented in Table 5. From
Table 5, it is noted that the maximum likelihood parameter estimates performed
well for estimating the distribution parameters. As the sample size increases, the
absolute bias and standard error decrease.

Consistency of the Parameter Estimates. Table 2 shows that the estimates
of parameters are consistent as shown by the values of absolute biases and stan-
dard errors. The absolute biases and standard errors converge to zero as the
sample size, n increases from 20 to 200 to 1000.

3.2. Application. In this section, we fit the propose distribution to two real
data sets to illustrate the usefulness and importance of the propose Gamma-
Power function distribution (GPLD). The distribution parameters are estimated
by the method of maximum likelihood and five goodness-of-fit statistics are com-
puted to compare the flexibility of the GPLD distribution with other competing
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Table 2. Actual values, Average Estimates and Standard errors
for various parameter values

Actual values Estimates Std Error.

N   K  ෝ  𝑘    K 

20 0.5 0.5 1.0 5 0.39 0.42 1.04 3.70 0.1004 0.1570 0.5341 0.0650

0.5 1.0 2.0 10 1.01 3.15 2.30 9.22 0.2823 1.1236 0.9736 0.8900

1.0 0.5 1.0 5 1.24 0.65 1.03 5.47 0.3531 0.2272 0.5411 0.0113

1.0 1.0 2.0 10 1.24 1.01 2.39 10.94 0.3537 0.3527 1.3898 0.0439

1.5 0.5 1.0 5 1.41 0.65 0.90 5.31 0.4045 0.2225 0.3708 0.0049

1.5 1.0 2.0 10 1.41 1.30 2.43 10.37 0.4045 0.4452 0.9399 0.0068

200 0.5 0.5 1.0 5 0.46 0.52 0.92 4.54 0.0381 0.0690 0.4097 0.0023

0.5 1.0 2.0 10 0.46 0.95 0.92 11.51 0.0375 0.1256 0.8736 0.2123

1.0 0.5 1.0 5 1.10 0.51 1.28 5.79 0.0822 0.0559 0.3411 0.0031

1.0 1.0 2.0 10 1.06 1.01 2.04 11.33 0.0939 0.1142 0.6283 0.0089

1.5 0.5 1.0 5 1.39 0.50 1.24 5.69 0.1255 0.0543 0.6630 0.0024

1.5 1.0 2.0 10 1.39 0.99 2.28 11.02 0.1255 0.1085 0.9398 0.0052

1000 0.5 0.5 1.0 5 0.48 0.51 0.98 5.85 0.0178 0.0297 0.0861 0.0007

0.5 1.0 2.0 10 0.51 1.04 1.86 11.60 0.0190 0.0603 0.4746 0.0026

1.0 0.5 1.0 5 1.03 0.53 1.26 5.79 0.0408 0.0267 0.1965 0.0006

1.0 1.0 2.0 10 1.00 1.04 2.02 11.53 0.0396 0.0525 0.4465 0.0023

1.5 0.5 1.0 5 1.58 0.56 0.98 5.67 0.0646 0.0267 0.2075 0.0004

1.5 1.0 2.0 10 1.58 1.11 2.20 11.00 0.0645 0.0535 0.9397 0.0010

distributions: Weibull-Power Cauchy distribution (WPC), Power Cauchy distri-
bution (PC), gamma distribution and Power function distribution. The goodness-
of-fit tests, Akaike information criterion (AIC), Anderson-Darling statistic (A),
Cramer-von Mises statistic (W) and Kolmogorov-Smirnov statistic (K-S) are com-
puted to compare the fitted distributions to the datasets. See [32] for detailed
information of A and W. Generally, the criteria for selection of best model among
competing models to the fit the data of interest, is the model with the smallest
values of these statistics. The required computations are carried out in the R-
language ([31]).

3.2.1. Application 1: Breaking Strengths of 100 Yarn Data. The first real data
set represents breaking strengths of 100 yarn ([33]): 66, 117, 132, 111, 107, 85,
89, 79, 91, 97, 68, 63, 61, 86, 78, 96,93, 61, 62, 60, 95, 96, 88, 62, 65, 92, 137,
91, 84, 96, 97, 60, 65, 64, 67, 80, 64, 104, 66, 84, 92, 86, 64, 132, 94, 99, 62, 61,
64, 67, 99, 85, 95, 89, 102, 100, 98, 97, 104, 64, 61, 98, 99, 102, 91, 95, 111, 104,
97, 98, 102, 109, 88, 91, 103, 94, 75, 73, 76, 70, 71, 78, 77, 77, 71, 72, 68, 64, 60,
68, 69, 62, 62, 87, 69, 62, 92, 60, 66, 98. The data has positive skewness (0.4958)
and kurtosis (2.7964). Table 3 displays the maximum likelihood estimates of the
parameters with their corresponding standard errors in brackets. Table 3 shows
all the parameters of the GPLD distribution and other competing distributions.

3.2.2. Application 2: Number of Successive Failures of the Air Conditioning Sys-
tem of a Fleet of 213 Boeing 720 Jet Airplanes. The second real data set consists
of 213 observations on the number of successive failures of the air conditioning
system of a fleet of 13 Boeing 720 jet airplanes ([34]): 50, 130, 487, 57, 102, 15,
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Table 3. MLE of Parameters and Standard Errors for Breaking
strengths data

Distribution Parameter Estimates

GPLD α̂ β̂ k̂ λ̂
0.3424 0.0705 138.1246 1.9412

(0.0386) (0.0144) (0.00698) (0.0194)
WPC ĉ α̂ σ̂

0.6964 21.2441 99.5837
(0.1517) (5.6077) (1.0215)

PC α̂ σ̂
13.8617 98.6978
(1.2646) (0.9599)

GAMMA α̂ β̂
22.2495 0.2654
(3.1220) (0.0377)

POWER λ̂ k̂
138.1246 2.9728
(0.0070) (0.2996)

Table 4. Goodness-of-fit Statistics and Criteria for Breaking
strengths data

Distribution AIC A W K-S
GPLD 311.5056 0.3888 0.0750 0.0457
WPC 769.4093 0.4656 0.0792 0.0785
PC 770.0498 0.7381 0.1205 0.0870

GAMMA 860.2893 2.3244 0.3733 0.1233
POWER 950.5711 2.6500 0.4132 0.2221

14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11,
102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220,
120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32,
9, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1,
79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26,
59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18,
25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 39, 30, 7,
44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163, 208, 1,24, 70, 16, 101,
52, 208, 95, 62, 11, 191, 14, 71.
The skewness and kurtosis of the data are 2.2332 and 8.7353 respectively. The
data is positively skewed and very peaked.
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Table 5. Maximum likelihood estimates of parameters and stan-
dard errors for Boeing Data

Distribution Parameter Estimates

GPLD α̂ β̂ k̂ λ̂
0.2307 0.0147 1.0515 0.3901

(0.0189) (0.0026) (0.0500) (0.0292)
WPC ĉ α̂ σ̂

3.2915 0.3467 22.6104
(1.5537) (0.1648) (12.5758)

PC α̂ σ̂
1.1652 48.8228

(0.0776) (4.6173)

GAMMA α̂ β̂
22.2495 0.0100
(0.0821) (0.0012)

POWER λ̂ k̂
1.0515 0.3901

(0.0503) (0.02915)

Table 6. Goodness-of-fit Statistics and Criteria for Breaking
strengths data

Distribution AIC A W K-S
GPLD 826.6376 0.0474 0.0467 0.0426
WPC 1962.4300 0.4187 0.0624 0.0450
PC 1973.1370 0.1377 0.9367 0.0585

GAMMA 1968.0810 1.2851 0.2283 0.0710
POWER 2071.5000 2.2191 0.3262 0.2211

4. Discussion

In this work, we generalised the power function distribution using the T-R{Y}
framework. Thus, the T-Power{Y} family was generated. The general proper-
ties of the proposed family are derived, such as the cdf, pdf, survival, hazard,
cumulative hazard, reversed hazard, and quantile functions. Some useful trans-
formation were explored to show the relationship between the new family and ex-
isting families. Six quantile functions, including exponential, log-logistic, frechet,
logistic, extreme value and uniform were explored for the Y variable. Two distri-
butions were generated from each quantile function. Thus, twelve distributions
that are member of this family were developed. A special case of this family is
called Gamma-Power function{Log-logistics} distribution (GPLD) and was prop-
erly discussed.

All the important characterisations and properties of GPLD were derived such
characterisations as the cdf, pdf, survival, hazard, cumulative hazard, reversed
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hazard, and quantile functions. The moment using the series linear form of the pdf
and order statistics were also derived. The MLE method was used to estimate
two shape parameters and a scale parameter, while the other scale parameter,
which is also an upper bound of the distribution was estimated using an approx-
imation method, because it is an upper bound.

A simulation study was carried out to test the consistency of the MLE parame-
ters. The simulation result shows that the parameters are consistent, in the sense
that, as the sample size increases, error decreases. Two real data were used to
test the flexibility of the distribution. The first appliaction data is on breaking
strengths of 100 yarn, and the result clearly shows that the GPLD distribution
provides the best fit to the breaking strengths data among other distributions
such as WPC, PC, Gamma and Power distributions. The maximum likelihood
estimates of the parameters of the fitted distributions with their corresponding
standard errors in brackets are given in Table 3. All the parameters of the GPLD
are significant at 5% level. The GPLD provides a better fit to the yarn data than
the WPC, PC, Gamma and Power function distributions as shown in Table 4.

The second data set is on the number of successive failures of the air Condi-
tioning System of a fleet of 213 Boeing 720 Jet Airplanes. The result also shows
that the GPLD distribution provides the best fit to the second data among the
competing distributions. The maximum likelihood estimates of the parameters
of the fitted distributions with their corresponding standard errors in brackets
are given in Table 5. All the parameters of the GPLD are significant at 5% level.
The GPLD provides a better fit to the breaking strength data than the WPC,
PC, Gamma and Power function distributions as shown in Table 6.

5. Conclusion

We propose a new univariate continuous probability distribution called Gamma-
Power function distribution with log-logistic quantile function (GPLD) using the
T-R{Y} framework. The GPLD is a member of the T-Power function{Y} fam-
ily and results on its statistical properties are presented, such as the cumulative
distribution function, density function, the quantile function, survival function,
hazard function, cumulative hazard function, moments, and order statistics. The
maximum likelihood estimation of the parameters of the model were derived.
GPLD distribution was applied to two data and the results of its performance
were compared favourably with WPC, PC, Gamma and Power distributions.
This is a clear indication that a convoluted distribution is a better model than
its sub-models or distributions combined to form the convoluted distribution.
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Figure 3. The cdf of GPLD Distribution for λ = 1.
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Figure 4. The pdf of GPLD Distribution for λ = 1.


	1. Introduction
	2. Materials and Methods
	2.1. Developing the T-Power Function"4266308 Y"5267309  Distribution
	2.2. T-Power Function"4266308 Y"5267309  Classes of Distributions 
	2.3. General Properties of T-P"4266308 Y"5267309  Family
	2.4. Gamma-Power"4266308 log-logistic"5267309  
	2.5. Cumulative Hazard Function of GPLD
	2.6. Quantile Function of GPLD
	2.7. Moment of GPLD
	2.8. Order Statistics of GPLD
	2.9. Maximum Likelihood Estimation (MLE)

	3. Result
	3.1. Simulation Study
	Consistency of the Parameter Estimates
	3.2. Application

	4. Discussion
	5. Conclusion
	Acknowledgment
	Authors Contributions
	Authors' Conflicts of interest
	Funding Statement

	References

